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Wymagania wstępne: 
podstawowa znajomość inżynierii oprogramowania, technik modelowania: UML, E-R, zagadnień dotyczących analizy i projektowania baz danych
Limit liczby studentów: 
60
Cel przedmiotu: 
Celem wykładu jest zapoznanie słuchaczy z cyklem życia projektu informatycznego oraz z zagadnieniami dotyczącymi prac analitycznych i projektowych.
Przedstawione są tradycyjne i zwinne metody realizacji projektów, w szczególności metoda Scrum. Zasadniczym celem jest dogłębne zrozumienie przez słuchaczy problematyki prowadzenia projektów, występujących problemów, wad i zalet poszczególnych metod oraz zasad doboru metod i technik odpowiednich do realizowanych projektów.
W zakresie zagadnień analityczno-projektowych omawiane są metody i techniki związane ze zbieraniem i analizą wymagań, analizą systemową, definiowaniem architektury oraz projektem ogólnym systemu.
Celem zajęć projektowych jest praktyczna weryfikacja wiedzy nabytej na wykładzie oraz nabycie podstawowych umiejętności dotyczących prac analitycznych i projektowych.
Istotnym celem jest również nauka pracy zespołowej. Studenci realizują projekty w zespołach (standardowo 4-osobowych) i mają do wyboru możliwość realizacji projektu w trybie tradycyjnym lub w metodzie Scrum.
Treści kształcenia: 
Wprowadzenie: elementy cyklu życia systemu informatycznego.
Model kaskadowy i jego problemy.
Metody rozwiązywania problemów modelu kaskadowego, technika kontroli zmian, model przyrostowy i jego problemy.
Modele iteracyjne, model spiralny: ich założenia, cechy i mechanizmy; technika Timeboxing. Modele hybrydowe: RUP.
Podsumowanie i porównanie modeli cyklu życia systemu.
Problemy tradycyjnego podejścia do realizacji projektu informatycznego, wprowadzenie do zasad podejścia zwinnego (Agile).
Manifest i pryncypia podejścia zwinnego. Korzyści i problemy wynikające ze stosowania metod zwinnych.
Analiza wymagań: wprowadzenie do technik zbierania i specyfikowania wymagań.
Technika przypadków użycia (Use Case): sposób opisu, różnicowanie przypadków użycia (biznesowe – systemowe – współpracy, wysokiego poziomu – rozszerzone, główne – drugorzędne, istotne – rzeczywiste, black box – white box). Metody identyfikacji przypadków użycia (3 perspektywy), rola przypadków użycia w procesie realizacji systemu.
Strukturalizacja modelu przypadków użycia: istota i techniki strukturalizacji, związki pomiędzy aktorami, związki pomiędzy przypadkami użycia. Analiza modelu.
Technika historyjek użytkownika (User Stories): istota, zasady i cechy techniki, rola historyjek użytkownika w procesie realizacji systemu, forma opisu - kanoniczna i rozszerzona, reguły INVEST i CCC, zasady i techniki dekompozycji historyjek.
Relacja pomiędzy przypadkami użycia, a historyjkami użytkownika. Stosowalność obu technik w projektach informatycznych.
Wymagania niefunkcjonalne: znaczenie dla projektu, sposób definiowania. Wymagania ilościowe i jakościowe.
Przegląd wymagań niefunkcjonalnych: niezawodność, dostępność, bezpieczeństwo, pojemność, wydajność, sprawność, efektywność, zarządzalność, wiarygodność, trwałość, użyteczność, ergonomia, zrozumiałość, wielojęzyczność, zgodność z normami, kompatybilność, topologia, modyfikowalność, indywidualizacja, uniwersalność, elastyczność, przenośność, kompletność, testowalność, reużywalność, skalowalność, rozszerzalność. 
Architektura systemu: zakres, cel i zasady definiowania architektury. Sposób opisu i stosowane techniki.
Metoda Scrum: wprowadzenie do metody, podstawy pojęcia i techniki: Sprint (Sprint Plannig, Sprint Review, Sprint Retrospective), Backlog; uczestnicy procesu: zespół, Scrum Master, Product Owner. Zasady stosowania, zalety, wady, i ograniczenia metody, problemy we wdrażaniu, 3 „typy” Scrum.
Techniki prototypowania i projektowania: Spike, Tracer Bullet, Personas.
Analiza systemowa: model analityczny, techniki opisu (analiza obiektowa). Relacja model przypadków użycia – model analityczny. Zaawansowane zagadnienia modelowania obiektowego: semantyka diagramu klas, w tym 12 typów związków agregacji, semantyka diagramu stanów.
Projektowanie: cel zadania, zawartość i sposób opisu specyfikacji, stosowane techniki opisu specyfikacji.
Projekt ogólny systemu: przegląd zagadnień koniecznych do ujęcia w specyfikacji.
Metody oceny: 
Ocena oparta jest na niezależnie ocenianej części projektowej i wykładowej (egzaminie).
W ramach projektu każdy z członków zespołu otrzymuje ocenę indywidualną w standardowej skali 2-5. Dla zaliczenia przedmiotu ocena z projektu musi być wyższa, niż 2.
Egzamin standardowo ma formę pisemną, jednakże gdy do danego terminu przystępuje nie więcej, niż 5 studentów, przeprowadzany jest w formie ustnej. Egzamin oceniany jest w zwykłej skali 2-5. Osoba, która nie przystąpi do egzaminu, otrzymuje ocenę 2. Przy zdawaniu w dwóch terminach liczona jest wyższa z uzyskanych ocen.
Ostateczna ocena z przedmiotu jest średnią arytmetyczną obu otrzymanych ocen zaokrągloną w górę do 0,5, z wyjątkiem sytuacji, gdy oceną z egzaminu jest 2 – wtedy ocena końcowa zaokrąglana jest w dół.
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[bookmark: _Toc1]Charakterystyki przedmiotowe
[bookmark: _Toc2]Profil ogólnoakademicki - wiedza
Charakterystyka APSI_W01: 
zna modele cyklu życia systemu informatycznego, ich problemy, wady i zalety
Weryfikacja: 
egzamin, projekt
Powiązane charakterystyki kierunkowe: K_W12, K_W07, K_W08
Powiązane charakterystyki obszarowe: I.P7S_WK, III.P7S_WK.o, I.P7S_WG, III.P7S_WG.o
Charakterystyka APSI_W02: 
zna techniki zbierania i analizy wymagań, w szczególności techniki przypadków użycia (Use Case) i historyjek użytkownika (User Stories)
Weryfikacja: 
egzamin, projekt
Powiązane charakterystyki kierunkowe: K_W05, K_W08
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o
Charakterystyka APSI_W03: 
zna techniki dotyczące analizy systemowej, zna semantykę modelu UML
Weryfikacja: 
egzamin, projekt
Powiązane charakterystyki kierunkowe: K_W02, K_W05, K_W08
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o
Charakterystyka APSI_W04: 
zna zagadnienia dotyczące specyfikacji projektu ogólnego systemu informatycznego
Weryfikacja: 
egzamin, projekt
Powiązane charakterystyki kierunkowe: K_W05, K_W08
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o
Charakterystyka APSI_W05: 
zna metodę Scrum
Weryfikacja: 
egzamin, projekt (opcjonalnie)
Powiązane charakterystyki kierunkowe: K_W08
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o
[bookmark: _Toc3]Profil ogólnoakademicki - umiejętności
Charakterystyka APSI_U01: 
potrafi dobrać odpowiednią metodę i techniki do konkretnego charakteru realizowanego projektu informatycznego
Weryfikacja: 
projekt
Powiązane charakterystyki kierunkowe: K_U13
Powiązane charakterystyki obszarowe: I.P7S_UW, III.P7S_UW.3.o
Charakterystyka APSI_U02: 
potrafi zebrać wymagania na system informatyczny i dokonać ich analizy wykorzystując odpowiednie techniki
Weryfikacja: 
projekt
Powiązane charakterystyki kierunkowe: K_U02, K_U05, K_U10, K_U12, K_U13
Powiązane charakterystyki obszarowe: I.P7S_UK, I.P7S_UW, III.P7S_UW.3.o, I.P7S_UO, III.P7S_UW.4.o
Charakterystyka APSI_U03: 
potrafi zdefiniować architekturę systemu informatycznego stosując odpowiednie metody weryfikacji jej poprawności, w tym prototypowanie
Weryfikacja: 
projekt
Powiązane charakterystyki kierunkowe: K_U09, K_U10, K_U12, K_U13, K_U14, K_U08
Powiązane charakterystyki obszarowe: I.P7S_UW, III.P7S_UW.1.o, III.P7S_UW.3.o, I.P7S_UO, III.P7S_UW.4.o
Charakterystyka APSI_U04: 
potrafi opracować specyfikację analityczną systemu informatycznego
Weryfikacja: 
projekt
Powiązane charakterystyki kierunkowe: K_U05, K_U12, K_U13
Powiązane charakterystyki obszarowe: I.P7S_UW, I.P7S_UO, III.P7S_UW.4.o, III.P7S_UW.3.o
Charakterystyka APSI_U05: 
potrafi opracować specyfikację ogólnego projektu systemu informatycznego oraz dobrać odpowiednie rozwiązania techniczne
Weryfikacja: 
projekt
Powiązane charakterystyki kierunkowe: K_U14, K_U05, K_U08, K_U10, K_U12, K_U13
Powiązane charakterystyki obszarowe: I.P7S_UW, I.P7S_UO, III.P7S_UW.4.o, III.P7S_UW.3.o
[bookmark: _Toc4]Profil ogólnoakademicki - kompetencje społeczne
Charakterystyka APSI_K01: 
potrafi pracować zespołowo
Weryfikacja: 
projekt
Powiązane charakterystyki kierunkowe: K_K01
Powiązane charakterystyki obszarowe: I.P7S_KO
