- Nazwa przedmiotu:
- Analiza Matematyczna I
- Koordynator przedmiotu:
- dr Halina Grabarska
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Mechanika i Budowa Maszyn
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- NW102
- Semestr nominalny:
- 1 / rok ak. 2009/2010
- Liczba punktów ECTS:
- 7
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia45h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- podstawowe wiadomości ze szkoły średniej
- Limit liczby studentów:
- Cel przedmiotu:
- Nauczenie podstaw matematyki wyższej niezbędnych w zastosowaniach inżynierskich.
- Treści kształcenia:
- Ciągi liczbowe. Liczba e, przestrzeń metryczna, przykłady przestrzeni metrycznych, zbieżność w przestrzeniach metrycznych. Własności odwzorowań w przestrzeniach metrycznych. Własności funkcji ciągłych w Rn. Pochodna funkcji rzeczywistej jednej zmiennej, twierdzenia o pochodnych, tablica pochodnych. Różniczka funkcji, pochodne i różniczki wyższych rzędów, twierdzenie de l’Hospitala. Własności funkcji różniczkowalnych jednej zmiennej rzeczywistej, twierdzenie Rolle’a, twierdzenie Lagrange’a, twierdzenie Cauchy’ego. Całka nieoznaczona, tablica całek, całkowanie przez części i przez podstawienie. Całkowanie funkcji wymiernych, trygonometrycznych oraz niektórych funkcji niewymiernych. Definicja i własności całki oznaczonej. Zastosowania całek oznaczonych, I i II twierdzenie podstawowe rachunku całkowego. Całka niewłaściwa. Pochodne cząstkowe, definicja różniczkowalności odwzorowań, różniczkowanie złożenia odwzorowań w Rn. Różniczka odwzorowania, pochodne i różniczki wyższych rzędów, wzór Taylora, ekstrema funkcji dwóch zmiennych rzeczywistych. Pochodna kierunkowa, gradient, twierdzenie o funkcji uwikłanej.
- Metody oceny:
- Przedmiot może zaliczyć tylko ten student, który jest na niego zarejestrowany. Obecność na zajęciach jest obowiązkowa i kontrolowana. Zaliczenie przedmiotu uzyskuje się na podstawie punktów uzyskanych z trzech kolokwiów przeprowadzanych w ciągu semestru oraz z egzaminu. Egzamin jest przeprowadzany w formie pisemnej (z częścią teoretyczną i zadaniową). Student, który dobrze zaliczył kolokwia może być zwolniony z części zadaniowej na egzaminie.
- Egzamin:
- Literatura:
- Zalecana literatura: 1) W. Żakowski: Matematyka cz. I i II 2) M. Gewert, Z. Skoczylas: Analiza matematyczna cz. I i II 3) W. Stankiewicz: Zadania z matematyki dla wyższych uczelni technicznych cz. I Dodatkowe literatura: - W.Krysicki, L.Włodarski: Analiza matematyczna w zadaniach - Materiały dostarczone przez wykładowcę
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się