- Nazwa przedmiotu:
- Analiza matematyczna II
- Koordynator przedmiotu:
- dr Halina Grabarska
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Energetyka
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- NW90
- Semestr nominalny:
- 2 / rok ak. 2009/2010
- Liczba punktów ECTS:
- 5
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Zdany egzamin z Analizy matematycznej I
- Limit liczby studentów:
- Cel przedmiotu:
- Nauczenie metod rozwiązywania równań różniczkowych zwyczajnych oraz nabycie umiejętności obliczania i stosowania całek wielokrotnych i krzywoliniowych .
- Treści kształcenia:
- Równania różniczkowe zwyczajne – pojęcia wstępne, interpretacja geometryczna równania y’=f(x,y), zagadnienie Cauchy’ego. Równania o zmiennych rozdzielonych. Równanie liniowe I-go rzędu. Równanie Bernoulli’ego, równania rzędu n sprowadzalne do równań niższego rzędu, równanie liniowe jednorodne n-tego rzędu, układ fundamentalny i jego własności, wronskian. Równania liniowe o stałych współczynnikach, równania Eulera, metoda uzmienniania stałych. Układy równań liniowych I-go rzędu, układy o stałych współczynnikach – metoda macierzowa. Całka podwójna. Zamiana zmiennych w całce podwójnej, całka potrójna. Całka krzywoliniowa niezorientowana, zamiana na całkę oznaczoną, definicja całki krzywoliniowej zorientowanej. Własności całki krzywoliniowej zorientowanej, wzór Greena na płaszczyźnie, pole wektorowe, całka krzywoliniowa w polu wektorowym, potencjał, niezależność całki od drogi całkowania.
- Metody oceny:
- Przedmiot może zaliczyć tylko ten student, który jest na niego zarejestrowany. Obecność na zajęciach jest obowiązkowa i kontrolowana. W celu zaliczenia należy uzyskać pozytywną ocenę z egzaminu. Egzamin jest przeprowadzany w formie pisemnej (z częścią teoretyczną i zadaniową).
- Egzamin:
- Literatura:
- Zalecana literatura: 1) W. Żakowski, W. Kołodziej: Matematyka cz. II 2) W. Żakowski, W. Leksiński: Matematyka cz. IV 3) M. Gewert, Z. Skoczylas: Analiza matematyczna II 4) W. Stankiewicz, J.Wojtowicz: Zadania z matematyki dla wyższych uczelni technicznych cz. II Dodatkowe literatura: - M. Gewert, Z. Skoczylas : Równania różniczkowe zwyczajne - Materiały dostarczone przez wykładowcę
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się