- Nazwa przedmiotu:
- Matematyka - wybrane działy
- Koordynator przedmiotu:
- Irena Musiał Walczak, Dr
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Budownictwo
- Grupa przedmiotów:
- Inżynieria Produkcji Budowlanej
- Kod przedmiotu:
- brak
- Semestr nominalny:
- 1 / rok ak. 2009/2010
- Liczba punktów ECTS:
- 5
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład450h
- Ćwiczenia675h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Znajomość materiału z matematyki z zakresu studiów I stopnia: analizy matematycznej I i II, algebry i geometrii analitycznej. W szczególności rachunku różniczkowego i całkowego funkcji jednej i wielu zmiennych; równań różniczkowych zwyczajnych; równań powierzchni drugiego stopnia, elementów geometrii różniczkowej, układów równań liniowych (metoda eliminacji Gaussa).
- Limit liczby studentów:
- Cel przedmiotu:
- Umiejętność rozwiązywania prostych równań różniczkowych cząstkowych liniowych. Umiejętność opracowywania danych za pomocą metod statystyki matematycznej. Znajomość testowania hipotez statystycznych parametrycznych i nieparametrycznych. Umiejętność formułowania i rozwiązywania problemów optymalizacyjnych za pomocą programowania liniowego z użyciem metody simpleks. Rozwiązywanie zagadnień transportowych. Znajomość elementów teorii gier ( gry z naturą), elementów teorii symulacji, elementów teorii masowej obsługi.
- Treści kształcenia:
- Szeregi Fouriera. Równania różniczkowe cząstkowe quasiliniowe I rzędu.. Równania różniczkowe cząstkowe liniowe rzędu II. Sprowadzanie równań liniowych różniczkowych cząstkowych II rzędu do postaci kanonicznej. Metody rozwiązywania: metoda d`Alemberta i Fouriera. Zmienna losowa jedno i dwuwymiarowa: zmienna skokowa i ciągła. Dystrybuanta, wartość średnia, wariancja. Rozkłady zmiennych losowych. Twierdzenia graniczne. Rozkład zero-jedynkowy, dwumianowy, Poissona, jednostajny, wykładniczy, Cauchy`ego, normalny, t-Studenta, chi-kwadrat. Test zgodności chi-kwadrat, test niezależności, test mediany. Analiza regresji i korelacji. Programowanie liniowe. Metoda simpleks. Programowanie całkowitoliczbowe. Zagadnienia transportowe. Elementy teorii gier, teorii symulacji, teorii masowej obsługi.
- Metody oceny:
- Ćwiczenia - dwa sprawdziany, każdy po 25pkt. Egzamin - część zadaniowa i część teoretyczna; łącznie 50 pkt. Przedmiot zalicza co najmniej 51pkt liczonych jako suma punktów z ćwiczeń i egzaminu.
- Egzamin:
- Literatura:
- 1. Kącki E. – Równania róŜniczkowe cząstkowe w zagadnieniach fizyki i techniki. WN-T. 2. Tołstow G.P. – Szeregi Fouriera. PWN 3. Musiał-Walczak I., Muszyński J., Radzikowski J., Włodarska-Dymitruk A. – Zbiór zadań z matematyki t.III – O.W. PW 4. Otto E. (praca zbiorowa) – Matematyka dla wydziałów budowlanych i mechanicznych. PWN. 5. Traczyk T, Mączyński M. – Matematyka stosowana w inŜynierii chemicznej. WN-T. 6. Tichonow, Samarski – Równania fizyki matematycznej. PWN. 7. Gerstenkorn T, Śródka T. – Kombinatoryka i rachunek prawdopodobieństwa. PWN. 8. Plucińska A. , Pluciński E. – Elementy probabilistyki. 9. Greń J. – Zadania i modele statystyki matematycznej. PWN 10. Smirnow, Dunin-Barkowski – Kurs rachunku prawdopodobieństwa i statystyki dla zastosowań technicznych. PWN. 11. Jaworski K.M. – Metodologia projektowania realizacji budowy. PWN. 12. Stark M., Nicholls R.L. – Matematyczne podstawy projektowania inżynierskiego. PWN. 13. Stachurski A., Wierzbicki A.,- Podstawy optymalizacji. PWN.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się