Nazwa przedmiotu:
Materiały funkcjonalne w sensorach mechatronicznych
Koordynator przedmiotu:
dr hab. inż. prof. P.W. Adam Bieńkowski
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechatronika
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
Semestr nominalny:
6 / rok ak. 2009/2010
Liczba punktów ECTS:
3
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia0h
  • Laboratorium15h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Wymagana jest znajomość podstaw: Fizyka, Elektrotechnika .
Limit liczby studentów:
Cel przedmiotu:
Znajomość wybranych zagadnień z zakresu doboru materiałów funkcjonalnych do zastosowań w sensorach mechatronicznych. Wiedza o metodach badania tych właściwości w odniesieniu do zastosowań sensorowych.
Treści kształcenia:
Materiały rezystancyjne Fizyczne źródła rezystancji. Rezystywność. Zależność rezystywności od temperatury i odkształceń. Rezystywność półprzewodników. Rezystory i ich właściwości funkcjonalne. Termistory i ich właściwości funkcjonalne. Fotorezystory i ich właściwości funkcjonalne. Warystory i ich właściwości funkcjonalne. Tensometry i ich właściwości funkcjonalne. Zastosowania tensometrów półprzewodnikowych.Materiały piezoelektryczne. Termodynamiczny opis zjawiska piezoelektrycznego. Właściwości termiczne, mechaniczne i dielektryczne piezoelektryków. Linie opóźniające. Materiały magnetyczne miękkie. Struktura domenowa w krysztale magnetycznym, warunki powstawania struktury domenowej w polikrystalicznych materiałach magnetycznych, anizotropia magnetokrystaliczna, magnetostrykcja spontaniczna. Podstawowe wiadomości o procesach magnesowania, charakterystyki magnesowania i parametry techniczne magnetyków.Materiały magnetyczne twarde – magnesy. Magnetowizja. Głowice odczytowePółprzewodniki do zastosowań sensorowych. Właściwości mechaniczne monokryształów krzemu. Obróbka krzemu. Budowa sensorów MEMS i MOEMS. Przykłady mikro sensorów i ich właściwości funkcjonalnych.Dielektryczne materiały konstrukcyjne organiczne i nieorganiczne. Czujniki pojemnościowe. Materiały ferroelektryczne. . Właściwości funkcjonalne ferroelektryka. Zastosowania ferroelektryków w kondensatorach dużej pojemności. Nieulotne pamięci ferroelektryczne. Badania właściwości chemicznych materiałów.Badania właściwości strukturalnych materiałów
Metody oceny:
Zaliczenie wykładu na podstawie kolokwium oraz ocena na podstawie wyników z poszczególnych ćwiczeń laboratoryjnych
Egzamin:
Literatura:
1. M. Leonowicz, J. J. Wysłocki „Współczesne magnesy” WKŁ 20052. K. Radecki „Materiały i elementy elektroniczne bierne” OWPW 19913. W. Gopel, T.A. Jones, M. Kleitz, I. Lundstrom, T. Seiyama „Sensors, a Comprehensive Survey”, Wiley-VCH, Weinheim, 1991. 4. J.W. Gardner, Microsensors: Principles and Applications, Wiley, Chichester, 1994. 5. M. Elwenspoek, H. Jansen, Silicon Micromachining, Cambridge Univ. Press, Cambridge, 1998. 6. S. Solomon, Sensors Handbook, McGraw-Hill, New York, NY, 1998. 7. Red. A. Ameu, Piezoelectric transducers and applications” Springer Velag 2004
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się