Nazwa przedmiotu:
Transport energii
Koordynator przedmiotu:
prof. dr hab. inż. Jerzy Banaszek
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Energetyka
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
NK415
Semestr nominalny:
1 / rok ak. 2009/2010
Liczba punktów ECTS:
2
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
NW116P - Termodynamika 1 (TERMA1) NK413 - Termodynamika 3 (TERMA3) NK423 - Wymiana ciepła 1 (WYCIEP1)
Limit liczby studentów:
Cel przedmiotu:
Umiejętność oceny źródeł strat energetycznych oraz znajomość metod ich oceny ilościowej w procesach termodynamicznych występujących w elementach maszyn cieplnych. Znajomość podstawowych mechanizmów wymiany masy oraz jednoczesnej wymiany ciepła i masy i ich zastosowań w technice.
Treści kształcenia:
Wykład: 1. Podstawowe mechanizmy transportu energii – praca, ciepło, wymiana masy; 2. Zastosowanie I i II Zasady Termodynamiki w ocenie jakości procesów przenoszenia energii – praca maksymalna, strata pracy, egzergia, sprawność egzergetyczna; 2. Przegląd zjawisk i procesów nieodwracalnych – przepływ z tarciem, wymiana ciepła, mieszanie, ciepło Joule’a, spalanie; 3. Procesy wymiany masy w naturze i technice (nawilżanie, osuszanie, rozpraszanie zanieczyszczeń, migracja wilgoci, ablacja, chłodzenie transpiracyjne, rury cieplne, etc); 4. Podstawowe pojęcia i mechanizmy przenoszenia składnika w mieszaninie, równania zachowania, nieciągłość koncentracji składnika na granicy dwóch ośrodków; 5. Dyfuzja masy, prawo Ficka, modele jednowymiarowe i ich rozwiązania: dyfuzja składnika w ściance płaskiej i walcowej, dwukierunkowa dyfuzja równomolowa, dyfuzja w nieruchomym gazie (prawo Stefana); 6. Konwekcyjna wymiana masy - konwekcja wymuszona (opływ ścianki i przepływ w kanale), konwekcja naturalna, model warstwy przyściennej, wzory kryterialne 7. Analogia wymiany ciepła, masy i pędu (porównanie praw, analogia Chiltona-Colburna) 8. Jednoczesna wymiana ciepła i masy, przykłady z natury i techniki Ćwiczenia: 1. Obliczenia strat pracy (mocy) w wybranych procesach nieodwracalnych (przepływy z tarciem, wymiana ciepła, mieszanie, ciepło Joule’a, spalanie) i elementach maszyn cieplnych (rurach, zaworach, komorach spalania, silnikach spalinowych i turbo-odrzutowych, chłodziarkach, pompach ciepła, etc.); 2. Obliczenia procesów dyfuzyjnej i konwekcyjnej wymiany masy – analityczne rozwiązania jednowymiarowe, wykorzystanie związków kryterialnych i analogii wymiany masy składnika, pędu i ciepła w procesach utylizacji odpadów, nawęglania stali, nawilżania i osuszania powietrza i materiałów, rozprzestrzeniania się NOx w atmosferze, wyznaczania współczynnika konwekcyjnej wymiany ciepła ciała o złożonej geometrii.
Metody oceny:
Dwa sprawdziany (rozwiązywanie zadań) w trakcie semestru i egzamin końcowy. Egzamin składa się z częci teoretycznej dla wszystkich słuchaczy oraz zadaniowej dla tych, którzy poprawiają kolokwia. Każde kolokwium oraz część teoretyczna egzaminu muszą być zaliczone, a ocena końcowa jest średnią arytmetyczną ocen ze wszystkich trzech części.
Egzamin:
Literatura:
1. J. Banaszek, J. Bzowski, R. Domański, J. Sado, „Termodynamika, Przykłady i Zadania”, wydanie II, Oficyna Wydawnicza PW, 2007. 2. Y.A. Cegel, „Heat and Mass Transfer: A Practical Approach”, Third Edition, Mc Graw Hill, 2006. Dodatkowa literatura: 1. F.P. Incropera, D.P. DeWitt, “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, Inc., 1998. 2. Bejan, “Convection Heat Transfer”, John Wiley & Sons, Inc., 1984.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się