- Nazwa przedmiotu:
- Procesy stochastyczne
- Koordynator przedmiotu:
- prof. dr hab. Jolanta Misiewicz
- Status przedmiotu:
- Fakultatywny ograniczonego wyboru
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Matematyka
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- Semestr nominalny:
- 6 / rok ak. 2011/2012
- Liczba punktów ECTS:
- 5
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Rachunek prawdopodobieństwa, Analiza matematyczna
- Limit liczby studentów:
- Cel przedmiotu:
- do uzupełnienia
- Treści kształcenia:
- 1. Podstawowe definicje i klasyfikacja procesów stochastycznych, pojęcie trajektorii, parametry liczbowe dla procesów drugiego rzędu..
2. Łańcuchy Markowa: prawdopodobieństwa przejścia, klasyfikacja stanów, okresowość i powracalność stanów, stacjonarność i ergodyczność, przykłady zastosowania łańcuchów Markowa.
3. Proces Poissona: podstawowe własności, bezpośrednia konstrukcja, złożony proces Poissona, poissonowskie pole losowe, warunkowy proces Poissona.
4. Łańcuchy Markowa z czasem ciągłym: czysty proces urodzin, proces urodzin i śmierci, problemy eksplozji demograficznej i wymarcia populacji.
5. Ogólne własności procesów: twierdzenie Kołmogorowa o istnieniu procesu o zadanych rozkładach, stochastyczna równoważność procesów, twierdzenia o istnieniu wersji ośrodkowych i cadlag dla procesów Levy’ego.
6. Proces Wienera: definicja i podstawowe własności, nierówność Levy’ego i zasada odbicia, ciągłość trajektorii i nieróżniczkowalność, konstrukcja Ciesielskiego, lokalne i globalne prawo iterowanego logarytmu, prawdopodobieństwo przejścia.
7. Procesy Markowa: rozkłady nieskończenie podzielne i markowska funkcja przejścia, istnienie wersji o ciągłych trajektoriach.
- Metody oceny:
- Zaliczenie ćwiczeń na podstawie obecności, aktywności i wyników kartkówek, które będą przeprowadzane na każdych zajęciach. Do zaliczenia potrzebna jest połowa możliwych do uzyskania z kartkówek punktów. Aktywnością na zajęciach można odrobić ewentualne stracone na kartkówkach punkty. Do egzaminu przystępują wszyscy.
Egzamin składa się z testu, zadań i pytań teoretycznych. Do uzyskania zaległego zaliczenia ćwiczeń należy uzyskać 65 % punktów z testu. Na ocenę składa się liczba punktów uzyskana na egzaminie w 70 % oraz liczba punktów uzyskana w ciągu semestru na ćwiczeniach w 30 %.
- Egzamin:
- Literatura:
- 1. A. Iwanik i J. Misiewicz, Wykłady z procesów stochastycznych z zadaniami. Część pierwsza: procesy Markowa. Podręcznik akademicki – Wydawnictwo Uniwersytetu Zielonogórskiego, 2009.
2. A. Plucińska i E. Pluciński, Probabilistyka, WNT, Warszawa, 2000.
3. J. Jakubowski i R. Sztencel, Wstęp do teorii prawdopodobieństwa, Script, Warszawa, 2000.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się