Nazwa przedmiotu:
Geometria wykreślna
Koordynator przedmiotu:
dr inż. / Andrzej Chwiej / adiunkt
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechanika i Budowa Maszyn
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
ZIMK11
Semestr nominalny:
1 / rok ak. 2010/2011
Liczba punktów ECTS:
4
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład300h
  • Ćwiczenia300h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Limit liczby studentów:
Cel przedmiotu:
Nabycie umiejętności w operowaniu obiektami w przestrzeni 3D.
Treści kształcenia:
W - Przynależność punktu do prostej; rzuty prostych przecinających się, równoległych skośnych; odwzorowanie płaszczyzny. Ślady prostych i płaszczyzny; proste i płaszczyzny rzutujące. Przynależność punktu i prostej do płaszczyzny; elementy wspólne prostych i płaszczyzn. Punkty przecięcia, przebicia, krawędzie. Elementy równoległe i prostopadłe. Zmiana kierunku rzutowania i układu odniesienia. Przeniesienie i obroty. Powinowactwo osiowe, kłady. Odwzorowania okręgu. Własności i odwzorowania powierzchni gładkich i wielościanów. Przekroje, przebicia i przenikania wielościanów i powierzchni II stopnia. Rzuty aksonometryczne i rozwinięcia powierzchni. Ć - Współrzędne przestrzenne a rzuty punktu; rzuty prostej; zapis założeń, danych, celów i rozwiązania zadania; dane i cele a dobór ścieżki rozwiązania. Sprawdzanie przynależności punktu do prostej i płaszczyzny. Proste i płaszczyzny rzutujące. Punkty wspólne prostych i płaszczyzn z rzutniami. Ślady prostych i płaszczyzn a rzuty obiektów; Elementy wspólne: punkty przecięcia i przebicia; krawędzie płaszczyzn. Proste i płaszczyzny równoległe. Elementy prostopadłe. Rzuty równoległe; powrót z rozwiązania; trzecia rzutnia; rzuty boczne; dobór rzutni bocznej do zagadnienia; przeniesienie; obroty. Kład, oś kładu, płaszczyzna ruchu punktu w kładzie; kład płaszczyzny; powrót z kładu. Powinowactwo osiowe; kład a powinowactwo osiowe; obraz przekroju graniastosłupa i ostrosłupa a powinowactwo osiowe. Rzuty okręgu, średnice sprzężone i osie; okrąg a elipsa; proste przecinające i styczne do elipsy. Odwzorowania i transformacje sfery, powierzchni walcowych i stożkowych; kierownica i ślad; odwzorowania graniastosłupów i ostrosłupów. Przekroje sfer, walców, stożków, graniastosłupów i ostrosłupów płaszczyznami. Przekroje a punkty przebicia prostymi. Przenikanie sfer, powierzchni walcowych i stożkowych; krawędzie przenikania; widoczność krawędzi; konwencje zapisu widoczności; tabela widoczności krawędzi.
Metody oceny:
Warunkiem zaliczenia wykładu i ćwiczeń jest uzyskanie pozytywnej oczeny z kolokwium końcowego z uwzględnieniem obecności i aktywności na ćwiczeniach.
Egzamin:
Literatura:
1. Mierzejewski W., Geometria wykreślna, Rzuty Monge'a, WPW, Warszawa 2006. 2. Lewandowski Z., Geometria wykreślna, PWN, Warszawa1980. 3. Koczyk H., Zbiór zadań z geometrii wykreślnej - zadania, WNT, Warszawa 1975. 4. Koczyk H., Zbiór zadań z geometrii wykreślnej - rozwiązania, WNT, Warszawa 1975. 5. Koczyk H., Geometria wykreślna teoria i zadania + rozwiązania zadań, PWN, Warszawa 1986. 6. Otto F. i E., Geometria wykreślna, PWN, Warszawa 1977.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się