Nazwa przedmiotu:
Podstawy badań operacyjnych
Koordynator przedmiotu:
Eugeniusz TOCZYŁOWSKI
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Informatyka
Grupa przedmiotów:
Przedmioty techniczne
Kod przedmiotu:
POBO
Semestr nominalny:
4 / rok ak. 2012/2013
Liczba punktów ECTS:
4
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
95
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia0h
  • Laboratorium15h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Znajomość matematyki na poziomie I roku studiów (zbiory, grafy, szeregi, układy równań liniowych, wykresy, podstawowe pojęcia rachunku prawdopodobieństwa: zmienne losowe, rozkłady, dystrybuanta).
Limit liczby studentów:
120
Cel przedmiotu:
Celem przedmiotu jest syntetyczne przedstawienie podstawowych modeli matematycznych, metod i narzędzi badań operacyjnych (w szczególności optymalizacji i symulacji) stosowanych do formułowania i rozwiązywania problemów decyzyjnych z zakresu techniki i zarządzania. Ukazanie zastosowań tych modeli na przykładach projektowania i analizy systemów komputerowych oraz sieci teleinformatycznych, w systemach wspomagania decyzji, przy planowaniu i harmonogramowaniu procesów produkcji i dystrybucji dóbr i usług oraz w systemach zarządzania. Osiągnięcie podstawowych umiejętności modelowania i rozwiązywania problemów inżynierskich w wymienionym zakresie z użyciem odpowiednich narzędzi informatycznych.
Treści kształcenia:
Podstawowe pojęcia z zakresu Badań Operacyjnych. Opis ogólnej metodologii Badań Operacyjnych: identyfikacja problemu, budowa modelu, opracowanie metody (algorytmu) rozwiązywania, proces rozwiązywania, analiza rozwiązań, weryfikacja i walidacja modelu, wdrożenie. Modele planowanie przedsięwzięć. Metoda ścieżki krytycznej. Zapasy czasu. Problem planowania przedsięwzięć z ograniczeniami zasobowymi (zasoby odnawialne i zużywalne). Uwzględnienie niepewności w planowaniu przedsięwzięć - metoda PERT. Programowanie liniowe. Podstawowe pojęcia. Formułowanie modeli programowania liniowego na przykładach wybranych problemów decyzyjnych. Interpretacja graficzna przy dwóch zmiennych decyzyjnych. Analiza parametryczna rozwiązań w zależności od wartości współczynników funkcji celu i ograniczeń. Omówienie idei algorytmu sympleks. Dualność w programowaniu liniowym, interpretacja cen dualnych. Modele programowania nieliniowego i optymalizacji dyskretnej: Przykładowe problemy decyzyjne prowadzące do zadań programowania nieliniowego i dyskretnego. Charakterystyka metod rozwiązywania zadań optymalizacji dyskretnej. Uwagi nt. złożoności obliczeniowej problemów i algorytmów. Programowanie dynamiczne: Sformułowanie wieloetapowego problemu decyzyjnego. Definicja etapu i stanu. Zasada optymalności Bellmana. Reprezentacja problemu z dyskretną i skończoną przestrzenią stanów za pomocą grafu. Wyznaczenie optymalnej trajektorii sterowania. Przykłady zastosowań metody programowania dynamicznego. Modele sieci przepływowych: zagadnienie maksymalnego i najtańszego przepływu. Właściwości modeli sieciowych - zadanie transportowe, przydziału, harmonogramowania. Przykładowe problemy decyzyjne modelowane za pomocą sieci przepływowych. Problemy szeregowania zadań na procesorach. Wprowadzenie do zagadnień szeregowania: zadania podzielne i niepodzielne, zależności czasowe między operacjami i zadaniami, typowe kryteria szeregowania. Klasyczne problemy szeregowania: problem przepływowy, gniazdowy, systemy otwarte. Wybrane algorytmy szeregowania. Systemy masowej obsługi. Modele systemów masowej obsługi. Charakterystyki funkcjonowania systemów obsługi w stanie ustalonym. Analiza prostego systemu obsługi typu (M|M|c) o ograniczonej pojemności i zadanych parametrach. Modele otwartych sieci kolejkowych. Symulacja systemów obsługi i analiza uzyskiwanych wyników.
Metody oceny:
Oceniane są zadania domowe, ćwiczenia laboratoryjne wykonywane indywidualnie oraz kolokwia.
Egzamin:
nie
Literatura:
1.Ignasiak E. (red.): Badania operacyjne, PWE. 2.Sysło M. M., Deo N., Kowalik J.S.: Algorytmy optymalizacji dyskretnej, PWN. 3.Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach, PWN.
Witryna www przedmiotu:
studia.elka.pw.edu.pl
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt W1
Zna metodologię badań operacyjnych i podstawowe modele stosowane do rozwiązywania zadań decyzyjnych.
Weryfikacja: Zadania domowe 1-5, laboratoria 1-5, kolokwia 1-2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt W2
Zna pojęcia z zakresu optymalizacji umożliwiające modelowanie zadań decyzyjnych.
Weryfikacja: Zadania domowe 1-4, laboratoria 1-4, kolokwia 1-2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt W3
Ma podstawową wiedzę z zakresu systemów masowej obsługi umożliwiającą przeprowadzenie analizy oraz symulacji prostego systemu.
Weryfikacja: Zadania domowe 4-5, laboratoria 4-5, kolokwium 2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:

Profil ogólnoakademicki - umiejętności

Efekt U1
Potrafi sformułować model programowania liniowego (PL) dla prostego problemu decyzyjnego
Weryfikacja: zadanie domowe 1, laboratorium 1, kolokwia 1-2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt U4
Umie zastosować model sieci przepływowej do rozwiązania problemu decyzyjnego.
Weryfikacja: zadanie domowe 3, laboratorium 3, kolokwium 1-2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt U5
Umie sformułować i rozwiązać za pomocą standardowego oprogramowania problem decyzyjny dyskretny
Weryfikacja: zadanie domowe 3, laboratorium 3, kolokwium 1-2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt U6
Potrafi przeprowadzić symulację procesu dyskretnego dla różnych reguł szeregowania zadań
Weryfikacja: Zadania domowe 4, laboratoria 4, kolokwium 2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt U2
Rozwiązać zadanie PL za pomocą standardowego oprogramowania i przeprowadzić analizę postoptymalizacyjną
Weryfikacja: zadanie domowe 1, laboratorium 1, kolokwia 1-2
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe:
Efekt U3
Zaplanować przedsięwzięcie metodą ścieżki krytycznej, wyznaczyć zapasy czasu poszczególnych operacji i utworzyć harmonogram realizacji przedsięwzięcia z uwzględnieniem standardowych wymagań.
Weryfikacja: zadanie domowe 2, laboratorium 2, kolokwium 1
Powiązane efekty kierunkowe:
Powiązane efekty obszarowe: