Nazwa przedmiotu:
Detekcja promieniowania jądrowego
Koordynator przedmiotu:
dr inż. Adam Kisiel
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Fizyka Techniczna
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
Semestr nominalny:
2 / rok ak. 2015/2016
Liczba punktów ECTS:
3
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia0h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Wstęp do fizyki jądrowej, Dozymetria, Metody i Techniki Jądrowe
Limit liczby studentów:
Cel przedmiotu:
Wykład jest skierowany do nie-specjalistów, którzy chcą zastosować techniki detekcji promieniowania jonizującego w swoich dziedzinach i potrzebują podstawowej skondensowanej wiedzy. Tym samym, wykład ten będzie dobrym wprowadzeniem dla studentów przed specjalizacją i w pierwszym roku tych specjalizacji, w których metody jądrowe i detektory promieniowania są narzędziem pracy. Do tych specjalizacji należą: fizyka jądrowa wysokich i niskich energii, fizyka cząstek elementarnych i promieni kosmicznych, jak również wiele działów w fizyce stosowanej (w zastosowaniach medycznych, dozymetrii, ochronie radiologicznej, chemii nuklearnej, w badaniach geologicznych).
Treści kształcenia:
Podsumowanie podstawowych zjawisk zachodzących przy przejściu cząstek przez materię, które mogą być wykorzystane przy detekcji promieniowania jonizującego; zasady opracowywania danych z detektora (efektywność detekcji, zdolności rozdzielcze, kalibracja, promieniowanie tła, szumy aparatury, zniszczenia radiacyjne). Omówienie podstawowych technik detekcji promieniowania jonizującego: scyntylatory, komory jonizujące, detektory półprzewodnikowe i promieniowania Czerenkowa, detektory śladowe ciała stałego (emulsje jądrowe, miki, plastiki, szkła), dozymetry (m. in. termoluminescencyjne) oraz komory pęcherzykowe, detektory przegrzanych kropel, detektory z granulek nadprzewodzących oraz technik detekcji jak folie aktywowane. Projektowanie eksperymentów, współpraca różnego typu detektorów i związane z tym problemy.
Metody oceny:
Egzamin ustny, referat
Egzamin:
Literatura:
W.R. Leo, Techniques for Nuclear and Particle Physics Experiments. C.F.G. Delaney, E.C. Finch, Radiation Detectors. A. Breskin, R.Voss, The CERN Large Hadron Collider: Accelerators and Experiments
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się