Nazwa przedmiotu:
Procesy podstawowe i aparatura procesowa 2
Koordynator przedmiotu:
prof. nzw. dr hab. inż. Tomasz Sosnowski
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Inzynieria Chemiczna i Procesowa
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
IC.IK610
Semestr nominalny:
6 / rok ak. 2015/2016
Liczba punktów ECTS:
3
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1. Godziny kontaktowe z nauczycielem akademickim wynikające z planu studiów 45 2. Godziny kontaktowe z nauczycielem akademickim w ramach konsultacji 7 3. Godziny kontaktowe z nauczycielem akademickim w ramach zaliczeń i egzaminów 5 4. Przygotowanie do zajęć (studiowanie literatury, odrabianie prac domowych itp.) 8 5. Zbieranie informacji, opracowanie wyników - 6. Przygotowanie sprawozdania, prezentacji, raportu, dyskusji - 7. Nauka samodzielna – przygotowanie do zaliczenia/kolokwium/egzaminu 20 Sumaryczne obciążenie studenta pracą 85 godz.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1,9 ECTS
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład45h
  • Ćwiczenia0h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Student powinien posiadać podstawową wiedzę z zakresu mechaniki płynów, termodynamiki, kinetyki procesowej, rysunku technicznego i materiałoznawstwa. Wymagane jest wcześniejsze zaliczenie przedmiotów: Grafika inżynierska [IC.IK104], Podstawy nauki o materiałach [IC.IK106], Wymiana ciepła [IC.IK404].
Limit liczby studentów:
100
Cel przedmiotu:
1. Zapoznanie studentów z podstawowymi operacjami w ciągach technologicznych, ze szczególnym zwróceniem uwagi na opis fenomenologiczny poszczególnych procesów i zrozumienie podstawowych zjawisk składających się na proces oraz opis ilościowy (głównie na poziomie równowagowym i stanów ustalonych). 2. Nabycie wiedzy i umiejętności w zakresie konstrukcji podstawowych aparatów do prowadzenia procesów jednostkowych i złożonych, zasad doboru i projektowania aparatury oraz instalacji procesowych.
Treści kształcenia:
Wykład 1. Procesy dyfuzyjne wymiany masy: pojęcie procesów ciągłych i stopniowych. Absorpcja w kolumnie półkowej; wyznaczanie ilości stopni dla układów rozcieńczonych; sprawność półki; sprawność ogólna. Sposób wyznaczania wysokości kolumny wypełnionej; pojęcia HTU i WRPT. Wpływ ciśnienia na skuteczność absorpcji. Konstrukcja absorberów i aparatów towarzyszących. 2. Adsorpcja; równowaga adsorpcyjna; własności adsorbentów; kinetyka adsorpcji; sposoby realizacji procesów adsorpcyjnych. Konstrukcja aparatów adsorpcyjnych. 3. Ekstrakcja w układzie ciecz-ciecz w układach ciągłych. Kaskady ekstraktorów pracujące w prądzie skrzyżowanym i przeciwprądzie; wyznaczanie liczby stopni ekstrakcyjnych. Ekstrakcja z użyciem płynów w stanie nadkrytycznym. Konstrukcja ekstraktorów. 4. Ługowanie – podstawy fizykochemiczne i równowagowe. Wyznaczanie liczby stopni. Aparatura do ługowania. 5. Destylacja równowagowa i różniczkowa; rektyfikacja. Obliczanie ilości stopni w kolumnie rektyfikacyjnej. Wpływ stanu termodynamicznego surówki na strukturę przepływu i miejsce zasilania w kolumnie. Konstrukcja półek i kolumn rektyfikacyjnych. 6. Powietrze wilgotne, metody suszenia i nawilżania gazów; klimatyzacja. Konstrukcja aparatów do suszenia/nawilżania gazów. 7. Suszenie ciał stałych – suszenie konwekcyjne, kontaktowe i radiacyjne. Podstawowe pojęcia suszarnicze, kinetyka suszenia, sposób obliczania suszarek. Konstrukcja aparatów suszarniczych. 8. Procesy chemiczne zachodzące w reaktorach: podstawy kinetyki reakcji chemicznych. Klasyfikacja reaktorów. Bilans masy w reaktorach okresowych i ciągłych. Stopień przereagowania. Kaskada reaktorów zbiornikowych. Klasyfikacja i charakterystyka reaktorów w oparciu o bilans cieplny. Reaktory adiabatyczne i izotermiczne. Stabilność reaktorów. Konstrukcja reaktorów i aparatów towarzyszących. 9. Procesy biochemiczne: podstawowe wiadomości o drobnoustrojach; enzymy; reakcje enzymatyczne. Kinetyka reakcji enzymatycznej; operacje swoiste bioprocesów; bioreaktory – bilanse biomasy i pożywki. Przemysłowe zastosowania procesów biochemicznych. Konstrukcja bioreaktorów. 10. Podstawy membranowych procesów rozdziału. Konstrukcja modułów membranowych.
Metody oceny:
Egzamin pisemny
Egzamin:
tak
Literatura:
1. A. Selecki, L. Gradoń, Podstawowe procesy przemysłu chemicznego, WNT, Warszawa, 1985. 2. J. Ciborowski, Podstawy inżynierii chemicznej, WNT, Warszawa, 1967. 3. J. Warych, Aparatura Chemiczna i Procesowa, OWPW, 2004. 4. H. Błasiński, B. Młodziński, Aparatura przemysłu chemicznego, WNT, Warszawa, 1983. 5. M. Serwiński, Zasady inżynierii chemicznej, WNT, Warszawa, 1976 i późniejsze.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt W1
Ma wiedzę niezbędną do zrozumienia podstaw fizycznych i chemicznych oraz obliczania podstawowych procesów inżynierii chemicznej.
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_W04
Powiązane efekty obszarowe: T1A_W02, T1A_W03
Efekt W2
Ma elementarną wiedzę w zakresie spektrum dyscyplin inżynierskich powiązaną z inżynierią chemiczną i procesową oraz inżynierią materiałową.
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_W11
Powiązane efekty obszarowe: T1A_W06
Efekt W3
Posiada ogólną orientację w aktualnych kierunkach rozwoju inżynierii chemicznej i procesowej.
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_W12
Powiązane efekty obszarowe: T1A_W05

Profil ogólnoakademicki - umiejętności

Efekt U1
Potrafi określić podstawy fizyczne i chemiczne podstawowych procesów i operacji jednostkowych
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_U11
Powiązane efekty obszarowe: T1A_U14
Efekt U2
Potrafi dobrać odpowiedni sposób realizacji procesu z zakresu inżynierii chemicznej
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_U12
Powiązane efekty obszarowe: T1A_U09
Efekt U3
Potrafi bilansować podstawowe procesy z zakresu inżynierii chemicznej
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_U20
Powiązane efekty obszarowe: T1A_U15, T1A_U16

Profil ogólnoakademicki - kompetencje społeczne

Efekt KS1
Potrafi przekazać informacje o inżynierii chemicznej i procesowej w sposób powszechnie zrozumiały
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe: K_K03
Powiązane efekty obszarowe: T1A_K05