Nazwa przedmiotu:
Termodynamika
Koordynator przedmiotu:
dr inż. Piotr Orliński
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechanika i Budowa Maszyn
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
214
Semestr nominalny:
4 / rok ak. 2015/2016
Liczba punktów ECTS:
3
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
brak
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
brak
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
brak
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Posiadanie wiedzy dotyczącej podstawowych wiadomości z zakresu fizyki i chemii ze szkoły średniej
Limit liczby studentów:
zgodnie z zarządzeniem Rektora PW
Cel przedmiotu:
Poznanie problemów technicznych w oparciu o prawa termodynamiki. Umiejętność zastosowania termodynamiki do opisu zjawisk fizycznych oraz modelowania matematycznego wymiany ciepła w procesach technologicznych. Świadomość wymagań i ograniczeń w działaniach inżynierskich.
Treści kształcenia:
Wykład. Termodynamika jako dyscyplina naukowa. Podstawowe pojęcia i definicje: energia, entropia, układ termodynamiczny, parametry termodynamiczne, pojęcie stanu układu i równowagi termodynamicznej. Jednostki wielkości stosowanych w termodynamice, zerowa zasada termodynamiki. Mikroskopowe postacie energii, energia wewnętrzna jako sumaryczny efekt ruchu i oddziaływań cząstek. Podstawowy pewnik termodynamiki. Praca i ciepło jako sposoby transportu energii między układami. I zasada termodynamiki dla układów zamkniętych. Ciepło właściwe, entalpia, równanie stanu gazu doskonałego, przemiany charakterystyczne. Mieszaniny gazów doskonałych i prawo Daltona. Gazy rzeczywiste, równania stanu p-v-T dla gazów rzeczywistych, równanie van der Waalsa. I zasada termodynamiki dla układów otwartych, Pojęcie entropii, własności entropii, przemiany odwracalne i nieodwracalne, entropia jako funkcja stanu, II zasada termodynamiki, termodynamiczna definicja temperatury. Bilansowanie produkcji entropii. Zastosowanie II zasady termodynamiki do układów konwersji energii. Przykłady obiegów termodynamicznych: obieg Carnota, sprawność obiegu, przykłady obiegów silnikowych. Sprawności obiegów silnikowych. Obiegi chłodnicze. Sprężarki tłokowe. Niekonwencjonalne źródła energii. Podstawowe wiadomości o wymianie ciepła, mechanizmy wymiany ciepła przewodzenie, konwekcja, promieniowanie, złożona wymiana ciepła (przenikanie), liczby podobieństwa, sposoby wyznaczania współczynnika przejmowania ciepła. Podstawowe wiadomości o procesie spalania, spalanie całkowite i zupełne, ciepło spalania i wartość opałowa, zapotrzebowanie powietrza do spalania -współczynnik nadmiaru, skład spalin. Ćwiczenia: Parametry termodynamiczne (temperatura, ciśnienie, objętość właściwa), cechy fizyczne płynów: masa, gęstość, objętość, jednostki stosowane w termodynamice. Równanie stanu gazu doskonałego. Stan mieszaniny gazów doskonałych. Stan czynników rzeczywistych. Ciepło i praca. Przemiany gazów doskonałych i rzeczywistych. Wykresy pracy i ciepła. I zasada termodynamiki dla układów zamkniętych - wykorzystanie ciepła właściwego do obliczenia zmian energii wewnętrznej i entalpii powietrza. I zasada termodynamiki dla układów otwartych, bilanse energetyczne w stanie ustalonym. I zasada termodynamiki dla układów otwartych, stan nieustalony. Przemiany charakterystyczne gazu doskonałego, obiegi termodynamiczne gazów. Druga zasada termodynamiki, przemiany nieodwracalne. Termodynamika par, zastosowanie wykresu entalpia - entropia oraz tablic parametrów w stanie nasycenia. I zasada termodynamiki - obliczanie zmian energii wewnętrznej i entalpii pary. Gazy wilgotne, przemiany powietrza wilgotnego. Zapotrzebowanie powietrza do spalania paliwa. Wymiana ciepła: obliczanie gęstości strumienia ciepła, współczynników przejmowania i przenikania ciepła.
Metody oceny:
Sprawozdania z poszczególnych ćwiczeń laboratoryjnych oraz wejściówki (laboratorium), 3 kolokwia, egzamin
Egzamin:
tak
Literatura:
1) Ambrozik A. (red.): Laboratorium z termodynamiki i dynamiki przepływów, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 1995, 2) Ambrozik A.: Wybrane zagadnienia procesów cieplnych w tłokowych silnikach spalinowych. Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2003, 3) Banaszek J. i in.: Termodynamika. Przykłady i zadania, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998, 4) Cengel Y.A., Boles M.A.: Thermodynamics - an Engineering Approach, McGraw-Hill, 1989, 5) Dowkontt J.: Teoria silników cieplnych, WKiŁ 1973, 6) Fodemski T. (red.): Zbiór zadań z termodynamiki, Wydawnictwo Politechniki Łódzkiej, wyd. II, Łódź 1998, 7) Madejski J.: Termodynamika techniczna, Oficyna Wyd. Politechniki Rzeszowskiej, wyd. IV, Rzeszów 2000, 8) Nagórski Z., Sobociński R.: Wybrane zagadnienia z termodynamiki technicznej. Zbiór zadań, Wydawnictwo Politechniki Warszawskiej, Warszawa 2008, 9) Pomiary cieplne - praca zbiorowa, WNT, Warszawa, 1995, 10) Pudlik W.: Termodynamika - Zadania i przykłady obliczeniowe, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2000, 11) Staniszewski B.: Termodynamika, PWN, Warszawa 1986, 12) Szargut J., Guzik A., Górniak H.: Programowany zbiór zadań z termodynamiki technicznej, PWN, Warszawa 1979, 13) Whaley P.B.: Basic Engineering Thermodynamics, Oxford Science Publications, Oxford 1999, 14) Wiśniewski S.: Termodynamika techniczna, WNT 1980 15) Walentynowicz J.: Termodynamika techniczna i jej zastosowania, Wyd. Wojskowa Akademia Techniczna, Warszawa 2009, 16) Wrzesiński Z.: Termodynamika, Oficyna Wyd. Politechniki Warszawskiej, Warszawa 2002.
Witryna www przedmiotu:
http://www.ip.simr.pw.edu.pl/?q=content/termodynamika oraz http://www.ip.simr.pw.edu.pl/?q=content/laboratorium-termodynamiki
Uwagi:
brak

Efekty uczenia się