- Nazwa przedmiotu:
- Materiały konstrukcyjne
- Koordynator przedmiotu:
- Dr hab. inż. Robert Zalewski
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Mechatronika
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- 104
- Semestr nominalny:
- 1 / rok ak. 2015/2016
- Liczba punktów ECTS:
- 4
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- brak
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- brak
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- brak
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia0h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- brak
- Limit liczby studentów:
- zgodnie z zarządzeniem Rektora
- Cel przedmiotu:
- Zapoznanie studentów z budową metali, ich właściwościami fizycznymi (mechanicznymi), sposobami ich umacniania. Poznanie wykresów równowagi fazowej ze zwróceniem szczególnej uwagi na wykres żelazo-węgiel. Zdobycie informacji o obróbce cieplnej metali, ich przemysłowych stopach. Przyswojenie podstawowych informacji o materiałach ceramicznych, polimerach, kompozytach oraz materiałach inteligentnych. Zapoznanie słuchaczy z zagadnieniami dotyczącymi inżynierii powierzchni.
- Treści kształcenia:
- Wykład:
1. Budowa metali i ich stopów – materiały krystaliczne i amorficzne, podstawy krystalografii, polimorfizm i anizotropia materiałów krystalicznych, defekty struktury krystalicznej oraz ich wpływ na właściwości stopów metali. Rodzaje roztworów stałych, fazy międzymetaliczne, międzywęzłowe i o złożonej strukturze.
2. Właściwości mechaniczne materiałów konstrukcyjnych – gęstość, sztywność, sprężystość, wytrzymałość statyczna, wytrzymałość zmęczeniowa, twardość, wiązkość, kruchość i ścieralność, wytrzymałość na pełzanie.
3. Metody umacniania materiałów plastycznych – umocnienie roztworowe, wydzieleniowe, umocnienie przez rozdrobnienie ziaren, umocnienie odkształceniowe oraz zdrowienie i rekrystalizacja.
4. Układy równowagi fazowej – reguła faz Gibbsa, przebieg przemian fazowych w stanie stałym zachodzących w trakcie wolnego grzania lub chłodzenia poszczególnych stopów dwuskładnikowych oraz mechanizm i kinetyka przemian fazowych.
5. Stopy żelazo – węgiel – własności mechaniczne technicznego żelaza, odmiany krystalograficzne żelaza, układ równowagi fazowej żelazo – węgiel, przemiana eutektoidalna w stopach żelaza z węglem, strukturalny układ równowagi Fe–Fe3C, przemiany fazowe zachodzące w stopach żelazo – węgiel oraz ich wpływ na strukturę i właściwości stali.
6. Wpływ węgla i dodatków stopowych na strukturę i właściwości stopów układu Fe-C.
7. Obróbka cieplna stopów układu Fe-C.
8. Przemysłowe stopy żelaza – klasyfikacja, oznakowanie stali, kryteriami doboru, właściwości i zastosowanie przykładowych stali przemysłowych (stale konstrukcyjne, maszynowe, narzędziowe, sprężynowe oraz odporne na korozję i żaroodporne).
9. Aluminium i jego stopy – właściwości aluminium, metody umacniania stopów aluminium, podział stopów aluminium, oznaczenie, właściwości i zastosowanie przykładowych stopów aluminium.
10. Miedź i jej stopy - właściwości miedzi, klasyfikacja i oznakowanie stopów miedzi, właściwości i zastosowanie brązów, mosiądzów i miedzionikli.
11. Budowa, właściwości i zastosowanie tworzyw ceramicznych – klasyfikacja tworzyw ceramicznych, technologia ich wytwarzanie, mikrostruktura tworzyw ceramicznych i jej wpływ na właściwości ceramiki, konstrukcyjne i eksploatacyjne zasady stosowania ceramiki minimalizujące wpływ wad tworzyw ceramicznych na wytrzymałość konstrukcji, przykładowe gatunki ceramiki specjalnej.
12. Budowa, właściwości i zastosowanie polimerów - klasyfikacja polimerów, budowa makrocząsteczek i struktura polimerów oraz ich wpływ na właściwości, mechanizm odkształcenia polimerów, charakterystyka elastomerów i plastomerów, zastosowanie polimerów w przemyśle motoryzacyjnym, rodzaje tworzyw, metody oznakowania.
13. Budowa, właściwości i zastosowanie kompozytów – klasyfikacja kompozytów, kompozyty wzmacniane włóknami, właściwości kompozytów wzmacnianych włóknami, składniki strukturalne i ich wpływ na właściwości kompozytów polimerowych wzmacnianych włóknami, kompozyty wzmacniane cząstkami.
14. Inżynieria powierzchni – Istota inżynierii powierzchni, określenia: powłoka, warstwa wierzchnia, warstwa powierzchniowa, podział technik inżynierii powierzchni, przegląd nowoczesnych metod inżynierii powierzchni: obróbki jarzeniowe, procesy CVD i PVD, implantacja jonów, obróbki laserowe, struktura i właściwości warstw powierzchniowych, przykłady zastosowań, techniki multipleksowe z uwzględnieniem procesów natryskiwania cieplnego, detonacyjnego oraz chemicznego i elektrochemicznego wytwarzania powłok, kształtowanie właściwości materiałów konstrukcyjnych i funkcjonalnych technikami inżynierii powierzchni na przykładach dla przemysłu motoryzacyjnego.
- Metody oceny:
- 1) Wykład: zaliczenie;
- Egzamin:
- nie
- Literatura:
- 1. Ciszewski A., Radomski T., Szumer A.: Materiałoznawstwo, OWPW, Warszawa, 1998.
2. Ashby M.F., Jones D.R.H.: Materiały Inżynierskie 1. Właściwości i zastosowania, WNT, Warszawa, 1995.
3. Kocańda S., Szala J.: Podstawy obliczeń zmęczeniowych, PWN, Warszawa, 1997.
4. Wieleba W.: Analiza procesów tribologicznych zachodzących podczas współpracy kompozytów PTFE ze stalą, Wydawnictwo Politechniki Wrocławskiej, Wrocław, 2002.
5. Branagan D. J.: Enabling Factors Toward Production of Nanostructured Steel on an Industrial Scale. Journal of Materials Engineering and Performance, Vol. 14(1) February 2005, ASM International.
6. Rudnik S.: Metaloznawstwo, PWN, Warszawa, 1983.
7. Kaczorowski M, Krzyńska A.: Konstrukcyjne materiały metalowe, ceramiczne i kompozytowe, OWPW, Warszawa, 2008.
8. Prowans S.: Materiałoznawstwo, PWN, Warszawa – Poznań, 1977.
9. Dobrzański L.: Metaloznawstwo opisowe stopów żelaza, Wydawnictwo Politechniki Śląskiej, Gliwice, 2007.
10. Pampuch R. Budowa i właściwości materiałów ceramicznych, Wydawnictwo AGH, Kraków, 1995.
11. Dobrzański L.: Materiały inżynierskie i projektowanie materiałowe, WNT, Warszawa, 2006.
12. Górny Z.: Odlewnicze stopy metali nieżelaznych, WNT, Warszawa 1992.
13. Ashby M.F., Jones D.R.H.: Materiały Inżynierskie 2. Kształtowanie struktury i właściwości, dobór materiałów, WNT, Warszawa, 1996.
- Witryna www przedmiotu:
- http://www.simr.pw.edu.pl/ipbm/Instytut-Podstaw-Budowy-Maszyn/Zaklady/Zaklad-Mechaniki/Dydaktyka/Materialy-konstrukcje
- Uwagi:
- brak
Efekty uczenia się