- Nazwa przedmiotu:
- Fizyka
- Koordynator przedmiotu:
- dr/Edward Mulas/docent
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Technologia Chemiczna
- Grupa przedmiotów:
- Wspólne dla Wydziału
- Kod przedmiotu:
- WS2A_02
- Semestr nominalny:
- 2 / rok ak. 2016/2017
- Liczba punktów ECTS:
- 4
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Wykłady: liczba godzin według planu studiów - 15, przygotowanie do zajęć - 6, zapoznanie ze wskazaną literaturą - 3, przygotowanie do egzaminu - 16, razem - 40; Ćwiczenia: liczba godzin według planu studiów - 30, przygotowanie do zajęć - 15, przygotowanie do kolokwium - 15, razem - 60; Razem - 100
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Wykłady - 15 h, Ćwiczenia - 30 h; Razem - 45 h = 1,8 ECTS
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 0
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład15h
- Ćwiczenia30h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- -
- Limit liczby studentów:
- Wykład: min. 15; Ćwiczenia: 20 - 30
- Cel przedmiotu:
- Celem przedmiotu jest uzyskanie przez studenta wiedzy i umiejętności w zakresie fizyki drgań układów mechanicznych, elektrycznych i atomowych oraz ruchu falowego w ośrodkach sprężystych. Student potrafi opisać analitycznie i rozwiązać równania ruchu dla układów drgających prostych, tłumionych i wymuszonych. Umie obliczyć częstości drgań własnych układów drgających. Potrafi przeprowadzić symulację komputerową drgającego układu np. w programie MATHCAD lub Matlab.
Umie opisać analitycznie rozchodzenie fal w ośrodku sprężystym i obliczyć wielkości charakteryzujące ten ruch. Potrafi opisać analitycznie interferencję i dyfrakcję fal.
- Treści kształcenia:
- W1 - DYNAMICZNE RÓWNANIE RUCHU
Siły zależne od położenia, prędkości i czasu
Ruch z uwzględnieniem oporów
W2 - DYNAMICZNE RÓWNANIE RUCHU
Równanie Lagrange'a i równanie Newtona
Symulacja komputerowa ruchów - przykłady analizy numerycznej
W3 - DRGANIA HARMONICZNE
Oscylator mechaniczny, elektryczny, atomowy i jadrowy
Równanie drgań. Wielkości charakteryzujące ruch drgający
W4 - DRGANIA HARMONICZNE
Oscylator mechaniczny i drgający obwód elektryczny
Drgania cząsteczki dwuatomowej
Symulacja komputerowa drgań układów złożonych
W5 - SKŁADANIE DRGAŃ
Drgania współliniowe spójne
Drgania wzajemnie prostopadłe.
W6 - SKŁADANIE DRGAŃ
Przykłady składania drgań o różnych amplitudach i fazach początkowych
Figury Lissajous
W7 - DRGANIA TŁUMIONE - GASNĄCE
Równanie ruchu harmonicznego tłumionego
Słabe tłumienie. Logarytmiczny dekrement tłumienia
W8 - DRGANIA TŁUMIONE - GASNĄCE
Silne i bardzo silne tłumienie
Tłumienie krytyczne
Symulacja komputerowa drgających układów tłumionych - analiza numeryczna
W9 - DRGANIA WYMUSZONE
Równanie drgań
Stany ustalone. Słabe tłumienie
W10 - DRGANIA WYMUSZONE
Rezonans. Krzywa rezonansowa
Symulacja komputerowa drgań wymuszonych - analiza numeryczna
W11 - FALE W OŚRODKACH SPRĘŻYSTYCH
Klasyfikacja fal
Fale mechaniczne. Fale dźwiękowe
W12 - FALE W OŚRODKACH SPRĘŻYSTYCH
Równanie fali. Prędkość fazowa i grupowa
Fale biegnące i stojące. Echo i pogłos
W13 - FALE W OŚRODKACH SPRĘŻYSTYCH
Interferencja fal, dudnienie
Dyspersja fal
W14 - FALE TŁUMIONE
Równanie fali tłumionej
Fale dźwiękowe tłumione
W15 - FALE TŁUMIONE
Ultra i infradźwięki
Zjawisko Dopplera
Fale mechaniczne i elektromagnetyczne
C1 - Rozwiązywanie dynamicznego równ. ruchu dla sił zależnych od położenia…
C2 - Rozwiązywanie dynamicznego równ. ruchu dla sił zależnych od prędkości…
C3 - Symulacja komputerowa ruchu z uwzględnieniem sił oporu
C4 - Analiza matematyczna mechanicznych układów drgających prostych
C5 - Obliczanie charakterystyk prostych układów drgających
C6 - Składanie drgań o różnych fazach i amplitudach. Symulacja komputerowa
C7 - Analiza matematyczna mechanicznych układów drgających tłumionych
C8 - Rozwiązywanie równań dla układów tłumionych c.d.
C9 - Symulacja numeryczna układu drgającego tłumionego (MATHCAD)
C10 - Analiza matematyczna układów drgających z siłą wymuszającą
C11 - Analiza układów tłumionych z siłą wymuszającą. Krzywa rezonansowa.
C12 - Symulacja drgań wymuszonych w programie MATHCAD
C13 - Kolokwium, temat: ""Układy drgające""
C14 - Analiza matematyczna interferencji fal podłużnych i poprzecznych
C15 - Interferencja fal w dwóch wymiarach. Fale dżwiękowe w płaszczyźnie XY
- Metody oceny:
- Kolokwium na 13 zajęciach ćwiczeniowych. Egzamin w sesji letniej.
Minimum punktowe dla dopuszczenia do egzaminu to 20 pkt. z ćwiczeń. Maksymalna liczba punktów z ćwiczeń to 40 pkt. Minimum punktowe dla zdania egzaminu 30 pkt. Maksymalna liczba punktów z egzaminu to 60 pkt. Ocena końcowa to suma punktów z ćwiczeń i egzaminu t.j. 50-60 - TRZY: 60-70 - TRZY I PÓŁ: 70-80 -CZTERY : 80-90 - CZTERY I PÓŁ; 90-100 - PIĘĆ
- Egzamin:
- tak
- Literatura:
- Literatura podstawowa
1. R. Resnick, D. Halliday, J. Walker. Podstawy Fizyki t.1 - 5, PWN, Warszawa 2005.
2. J. Walker. Podstawy Fizyki. Zbiór zadań. PWN, Warszawa 2005
Literatura uzupełniająca.
1. J. Orear. Fizyka. T I i II, WNT, Warszawa 1998."
- Witryna www przedmiotu:
- -
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt W01_02
- 1. Ma rozszerzoną i pogłębioną wiedzę z zasad dynamiki 2. Umie zastosować i rozwiązać dynamiczne równanie ruchu do opisu prostego układu drgającego. 3. Potrafi rozwiązać i zinterpretować rozwiązanie równań ruchu dla układów tłumionych.
Weryfikacja: Pisemny egzamin testowy (W3, W7, W14); Kolokwium (C13)
Powiązane efekty kierunkowe:
C2A_W01_02
Powiązane efekty obszarowe:
T2A_W01
Profil ogólnoakademicki - umiejętności
- Efekt U08_01
- Umie numerycznie za pomocą symulacji komputerowej modelować układy drgające z uwzględnieniem oporów.
Weryfikacja: Pisemny egzamin testowy (W3, W7, W14); Kolokwium (C13)
Powiązane efekty kierunkowe:
C2A_U08_01
Powiązane efekty obszarowe:
T2A_U08