- Nazwa przedmiotu:
- Matematyka
- Koordynator przedmiotu:
- Prof.dr hab. Krzysztof Witczyński
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Inżynieria Środowiska
- Grupa przedmiotów:
- obowiązkowe
- Kod przedmiotu:
- 1110-ISIKU-IZP-2201
- Semestr nominalny:
- 2 / rok ak. 2017/2018
- Liczba punktów ECTS:
- 6
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład16h
- Ćwiczenia24h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Wymagane przedmioty poprzedzające
MATEMATYKA sem I
(Elementy algebry liniowej z geometrią i rachunku różniczkowego funkcji jednej zmiennej)
- Limit liczby studentów:
- Cel przedmiotu:
- Podanie i ilustracja materiału z następujących działów matematyki wyższej:
- rachunek całkowy funkcji jednej zmiennej rzeczywistej
- rachunek różniczkowy funkcji wielu zmiennych rzeczywistych
- równania różniczkowe zwyczajne
- Treści kształcenia:
- Bloki tematyczne (treści)
Rachunek całkowy funkcji jednej zmiennej rzeczywistej. Funkcja pierwotna i całka nieoznaczona. Podstawowe prawa i metody całkowania (funkcji wymiernych, trygonometrycznych, pierwiastkowych). Całka oznaczona pojedyncza – definicja, interpretacja geometryczna, warunki konieczne i dostateczne całkowalności. Podstawowe twierdzenia rachunku całkowego (Newtona-Leibniza, o postaci funkcji pierwotnej, o wartości średniej). Własności całki, twierdzenia o całkowaniu przez części i podstawienie. Uwagi o całkach niewłaściwych. Przykłady.
Rachunek różniczkowy funkcji dwóch (wielu) zmiennych rzeczywistych. Funkcja rzeczywista dwóch (wielu) zmiennych rzeczywistych – definicja, granica i ciągłość, pochodne cząstkowe (pierwszego i wyższych rzędów) – definicja, obliczanie, twierdzenie Schwarza.
Różniczka zupełna, zastosowanie w teorii błędów. Pochodna funkcji (pierwszego i drugiego rzędu) i jej macierz. Twierdzenie Taylora dla funkcji wielu zmiennych, ekstrema lokalne funkcji dwóch zmiennych – warunki konieczne i dostateczne, metoda poszukiwania ekstremów globalnych. Uwagi o ekstremach warunkowych. Funkcje uwikłane (jednej i dwóch zmiennych) i ich pochodne. Zastosowania do rozwiązywania problemów ekstremalnych.
Równania różniczkowe zwyczajne. Podział równań na zwyczajne i cząstkowe. Równania różniczkowe zwyczajne n-tego rzędu – podstawowe pojęcia (postać normalna, rozwiązanie, zagadnienie Cauchy’ego – całka ogólna i szczególna, rozwiązanie osobliwe), przykłady. Interpretacja geometryczna równania pierwszego rzędu, pojęcie izokliny. Metody rozwiązywania pewnych typów równań pierwszego rzędu (o zmiennych rozdzielonych, jednorodne, liniowe i Bernoulliego). Równania różniczkowe liniowe – własności, metoda uzmienniania stałych. Rozwiązywanie równań liniowych o stałych współczynnikach, metoda przewidywań. Uwagi o układach równań różniczkowych – podstawowe pojęcia, metoda eliminacji. Przykłady i zastosowania.
- Metody oceny:
- Warunki zaliczenia wykładu:
Egzamin
Osoba przystępująca do egzaminu musi mieć zaliczone ćwiczenia
Warunki zaliczenia ćwiczeń audytoryjnych:
Zaliczenie kolokwium
- Egzamin:
- Literatura:
- 1. A. M. Kaczyński: Podstawy analizy matematycznej. Rachunek różniczkowy. Tom 1. Oficyna Wydawnicza Politechniki Warszawskiej, Wyd. 2, 2006.
2. A. M. Kaczyński: Podstawy analizy matematycznej. Rachunek całkowy. Szeregi. Tom 2. Oficyna Wydawnicza Politechniki Warszawskiej, Wyd. 2 popr., 2005.
3. A. M. Kaczyński: Wybrane zagadnienia z matematyki stosowanej. Oficyna Wydawnicza Politechniki Warszawskiej, Wyd. 1, 2004.
4. W. Stankiewicz: Zadania z matematyki dla wyższych uczelni technicznych, cz. 1, wyd. 5. PWN, Warszawa, 1980.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się