- Nazwa przedmiotu:
- Tomografia rezonansu magnetycznego
- Koordynator przedmiotu:
- brak
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Fizyka Techniczna
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- Semestr nominalny:
- 1 / rok ak. 2017/2018
- Liczba punktów ECTS:
- 3
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia0h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- W przygotowaniu
- Limit liczby studentów:
- Cel przedmiotu:
- Wykład dotyczy zastosowań zjawiska rezonansu jądrowego w medycynie, w szczegolnosci w obrazowaniu medycznym. Zaznajamia z technikami tworzenia i cyfrowego przetwarzania obrazu w tomografii rezonansu magnetycznego MRI (Magnetic Resonance Imaging) oraz polepszaniem jego wartosci diagnostycznej.
- Treści kształcenia:
- W trakcie wykładu słuchacze zostaną zaznajomieni zarówno z samym zjawiskiem Jądrowego Rezonansu Magnetycznego jak i jego zastosowaniami do obrazowania morfologii i funkcji narządów wewnętrznych człowieka. Dodatkowo, na przykladzie sygnału rezonansu magnetycznego przekazywane są podstawowe umiejętności stosowania technik radiowych, procedur cyfrowego przetwarzania sygnałów oraz zastosowań specjalizowanych układów do cyfrowego przetwarzania sygnałów - Digital Signal Processing. Wykład obejmuje następujące bloki tematyczne:
• Podstawy fizyczne zjawiska jądrowego rezonansu magnetycznego (NMR). Przebieg i etapy tworzenia obrazu warstwowego, fenomenologiczny opis zjawiska rezonansu magnetyczneg. Tomograf Rezonansu Magnetycznego - tworzenie obrazu, przetwarzanie sygnalu - idea pracy (4h).
• Modelowanie układu spinów w oparciu o układ równań Blocha. Układ równań Blocha, interpretacja stałych czasowych T1, T2, warunki początkowe, wykorzystanie do modelowania układu spinów przy znanej sekwencji obrazującej, modelowanie pobudzenia selektywnego (5h).
.
• Obrazowanie techniką MRI. Pole główne, pola gradientowe. Sekwencje pomiarowe. Obrazowanie trójwymiarowe. Technika selektywnego pobudzenia. Algorytmy rekonstrukcji: algorytm rzutu wstecznego, algorytm obrazowania fourierowskiego. Metody szybkiego obrazowania. Przestrzen k. Podsumowanie podstawowych metod obrazowania, analiza czułości (4h).
• Tomograf rezonasu magnetycznego. Warunki pracy - wymagania dotyczące ekranowania pomieszczenia. Cewki pola głównego - rodzaje, parametry i cechy eksploatacyjne. Zasilacz pola głównego - parametry, przykłady konstrukcyjne. Cewki gradientowe - wymagania, rodzaje, parametry, rozkłady przestrzenne indukcji magnetycznej, porównanie efektywności. Wzmacniacz gradientowy. Cewki nadawczo-odbiorcze, cewki powierzchniowe. Wzmacniacz w.cz. Programator sekwencji pomiaro- wych. Układ akwizycji danych (4h).
• Specjalne techniki obrazowania. Echo gradientowe, sekwencja FLASH, Technika EPI (Echo-Planar Imaging) odmiany i przegląd wybranych implementacji. Obrazowanie przepływów - angiografia MRI. Obrazowanie przesunięcia chemicznego. Obrazowanie innych pierwiastków (4h).
• Wykorzystanie techniki MR do obrazowania czynnościwego (functional Magnetic Resonance Imaging). Wpływ przenikalności magnetycznej materiałow na sygnał NMR, sygnał Blood Oxigenation Level Dependent (BOLD). Modelowanie i prametryzacja sygnału BOLD, przetwarzanie dynamicznej serii czasowej obrazów. Zastosowanie ogólnego modelu liniowego do detekcji sygnału fMRI. Sposoby prezentacji obrazów czynnościowych (4h).
• Obrazowanie ukrwienia tkankowego (Perfusion Imaging) Modele przeływów tkankowych. Twierdzenie o średnim czasie przejścia. Obliczenie związku między koncentacją środka cieniującego, a wielkościa sygnału MR. Obrazowanie parametryczne (4h).
• Czynniki zagrożenia w tomografii rezonansu magnetycznego. Wpływ pola elektromagnetycznego i statycznego na organizm ludzki. Normy bezpieczenstwa. Wpływ na inne urządzenia techniczne stosowane w medycynie (1h).
Program ćwiczeń laboratoryjnych umożliwia praktyczne zapoznanie się z problemami omawianymi na wykladzie, jak również umożliwia nabycie praktycznych umiejętności stosowania technik radiowych i metod cyfrowego przetwarzania obrazów. Przykładowe tematy zajęć laboratoryjnych:
• Zapoznanie z systemem tomografu NMR BMT-1000 firmy Bruker. Samodzielne programowanie cyklu obrazowania z wykorzystaniem systemu TOMIKON.
• Układ detekcji tomografu NMR. Badanie odbiornika kwadraturowego toomografu BMT-1000 firmy Bruker
• Projektowanie i wykonanie układu odbiorczego sygnału NMR. Pomiar sygnału NMR za pomocą zaprojektowanego układu.
• Sekwencja pobudzeniowa Spin-Echo. Programowanie podstawowych parametrów sekwencji. Badanie czasów relaksacji próbek roztworów soli manganowej.
• Przetwarzanie sekwencji czynnościowej fMRI w środowisku Matlab/SPM2. Procedury przetwarzania obrazów na dostarczonych przykładach. Ekstrakcja cech odpowiedzi BOLD.
- Metody oceny:
- W przygotowaniu
- Egzamin:
- tak
- Literatura:
- 1. H.Gunther H., Spektroskopia Magnetycznego Rezonansu Jadrowego, PWN 1983
2. Price R. i inni, Nuclear Magnetic Resonance Imaging.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się