Nazwa przedmiotu:
Fizyka 3 - Laboratorium / Physics 3 - Laboratory
Koordynator przedmiotu:
dr Piotr Kurek
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Inżynieria Materiałowa
Grupa przedmiotów:
Obowiązkowy
Kod przedmiotu:
FIZ3
Semestr nominalny:
3 / rok ak. 2019/2020
Liczba punktów ECTS:
2
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Łączna liczba godzin pracy studenta - 60 godzin, w tym: uczestniczenie w ćwiczeniach laboratoryjnych – 30 godzin, przygotowanie się do wykonania części doświadczalnej, wykonanie sprawozdań – 30 godzin.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1 punkt ECTS – 30 godzin ćwiczeń laboratoryjnych.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
2 punkty ECTS - uczestniczenie w ćwiczeniach laboratoryjnych – 30 godzin, przygotowanie się do wykonania części doświadczalnej, wykonanie sprawozdań – 30 godzin.
Formy zajęć i ich wymiar w semestrze:
  • Wykład0h
  • Ćwiczenia0h
  • Laboratorium30h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Fizyka 1 wykład + ćw. rach. - semestr I, Fizyka 2 wykład + ćw. rach + Lab. Fiz. II - semestr II, Tematyka wybranych ćwiczeń w Lab Fiz. II uzupełnia program wykładu z Fizyki II prowadzonego w II sem. I roku studiów.
Limit liczby studentów:
8-12 studentów
Cel przedmiotu:
Rozwinięcie umiejętności prowadzenia doświadczeń z zakresu fizyki współczesnej (uzyskiwanie i analizowanie danych pomiarowych, formułowanie wniosków, opracowywanie sprawozdań).
Treści kształcenia:
Lista ćwiczeń laboratoryjnych wykonywanych w Lab. Fizyki II: 1) Charakterystyka licznika Geigera-Mullera i badanie statystycznego charakteru rozpadu promieniotwórczego. W ćwiczeniu wyznaczane są parametry licznika G-M. Uzyskiwany jest histogram i analizowany charakter rozpadu promieniotwórczego. 2) Badanie własności cząstek alfa za pomocą detektora półprzewodnikowego. Wyznaczany jest średni zasięg oraz zdolność hamowania cząstek alfa w powietrzu. Określana jest zdolność rozdzielcza detektora półprzewodnikowego i poznawana zasada działania analizatora wielokanałowego. 3) Promieniotwórczość. Badanie widma energii promieniowania przy pomocy spektrometru scyntylacyjnego. W doświadczeniu wykonywane są pomiary widm dla źródeł o znanych energiach kwantów , ustalane są położenia fotopików i wykreślana prosta skalowania. Wyznaczane są krawędzie Compton’a i piki rozpraszania wstecznego. 4) Badanie widma i absorpcji promieniowania rentgenowskiego. Rejestrowane są widma rentgenowskie dla różnych napięć przyśpieszających elektrony. Wyznaczane są krótkofalowa granice widm i wyznaczana stała Plancka. Określane są położenia linii charakterystycznych i porównywana jest ich wartość z danymi teoretycznymi. Dyskutowana jest zasada monochromatyzacji wiązki promieniowania przez absorpcję (filtr niklowy) i odbicie (analizator monokrystaliczny). 5) Wyznaczanie param. mikroskopowych półprzewodników w oparciu o zjawisko Halla. Określany jest rodzaju nośników większościowych. Wyznaczana jest stała Halla, koncentracja nośników ładunku elektrycznego, przewodność elektryczna oraz ruchliwość. Mierzony jest również magnetoopór. 6) Wyznaczanie energii aktywacji w półprzewodnikach.Ćwiczenie polega na pomiarze oporności elektrycznej półprzewodnika w funkcji temperatury. Identyfikowane są możliwe przejścia międzypasmowe. Wyznaczana jest energia aktywacji. 7) Badanie własności dielektrycznych ferroelektryków. W ćwiczeniu badane jest zachowanie ferroelektryka w funkcji temperatury. Określane są parametry pętli histerezy oraz wyznaczana jest temperatura Curie. Sprawdzane jest także prawo Curie –Weissa. 8) Ultradźwiękowe badanie materiałów. Wyznaczana jest prędkość podłużna i poprzeczna fal akustycznych dla stali, aluminium, mosiądzu i polistyrenu. Określany jest współczynnik tłumienia. 9) Badanie wiązki świetlnej. W ćwiczeniu, z pomocą światłowodu sprzężonego z fotodiodą wyznaczane są rozkłady natężenia światła emitowanego przez laser Ne-He i diodę elektroluminescencyjną. Sprawdzane jest czy badane wiązki mają charakter gaussowski. 10) Badanie przejść fazowych i właściwości elektrooptycznych ciekłych kryształów. Obserwowane są pod mikroskopem sprzężonym z kamerą CCD efekty elektrooptyczne zachodzące w ciekłych kryształach. Wyznaczane są: temperatury przejść fazowych podczas grzania i chłodzenia, wartości napięcia progowego przy którym zachodzi deformacja tekstury planarnej ciekłego kryształu, badany jest efekt skręconego nematyka w typowym wyświetlaczu ciekłokrystalicznym.
Metody oceny:
Przygotowanie do zajęć ocenia prowadzący przeprowadzając kolokwium/rozmowę wstępną obejmującą: ogólne wiadomości z działu którego dotyczy dane ćwiczenie, wiadomości szczegółowe na temat badanego zjawiska, znajomość metody pomiarowej stosowanej w danym ćwiczeniu. Maksymalna liczba punktów możliwa do uzyskania wynosi 100: kolokwium wstępne (0-10 pkt.), 9 ćwiczeń każde 0-10 pkt. - 4 pkt. za przygotowanie, 2 pkt. za wykonanie i 4 pkt. za sprawozdanie. (ćwiczenie jest zaliczone przy co najmniej 2 pkt. za przygotowanie, 1 pkt. za wyk. i 2 pkt. za spr.). Laboratorium zostaje zaliczone gdy student uzyska co najmniej 51 pkt. w tym: minimum 5 pkt. z kolokwium wstępnego, zaliczy co najmniej 8 ćwiczeń.
Egzamin:
nie
Literatura:
instrukcje laboratoryjne - strona www.labfiz2p.if.pw.edu.pl
Witryna www przedmiotu:
http://www.labfiz2p.if.pw.edu.pl/
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka FIZ3_W1
Zna zagadnienia związane z promieniotwórczością i widmami energii promieniowania
Weryfikacja: Kolokwium
Powiązane charakterystyki kierunkowe: IM1_W02
Powiązane charakterystyki obszarowe: I.P6S_WG
Charakterystyka FIZ3_W2
Zna właściwości elektryczne półprzewodników, dielektryków i ferroelektryków
Weryfikacja: Kolokwium
Powiązane charakterystyki kierunkowe: IM1_W02, IM1_W19
Powiązane charakterystyki obszarowe: I.P6S_WG
Charakterystyka FIZ3_W3
Posiada wiedzę na temat przejść fazowych i właściwości elektrooptycznych ciekłych kryształów
Weryfikacja: Kolokwium
Powiązane charakterystyki kierunkowe: IM1_W02, IM1_W19
Powiązane charakterystyki obszarowe: I.P6S_WG

Profil ogólnoakademicki - umiejętności

Charakterystyka FIZ3_U1
Potrafi dokonać pomiarów widm dla źródeł o znanych energiach i wyznaczyć stałą Plancka
Weryfikacja: Ocena sprawozdania z ćwiczenia laboratoryjnego
Powiązane charakterystyki kierunkowe: IM1_U08, IM1_U09
Powiązane charakterystyki obszarowe: I.P6S_UW, III.P6S_UW.1.o, III.P6S_UW.2.o, III.P6S_UW.4.o
Charakterystyka FIZ3_U2
Potrafi wyznaczyć parametry półprzewodników w oparciu o zjawisko Halla
Weryfikacja: Ocena sprawozdania z ćwiczenia laboratoryjnego.
Powiązane charakterystyki kierunkowe: IM1_U08, IM1_U09
Powiązane charakterystyki obszarowe: I.P6S_UW, III.P6S_UW.1.o, III.P6S_UW.2.o, III.P6S_UW.4.o
Charakterystyka FIZ3_U3
Potrafi z pomocą światłowodu wyznaczyć rozkłady natężenia światła emitowanego przez laser
Weryfikacja: Ocena sprawozdania z ćwiczenia laboratoryjnego.
Powiązane charakterystyki kierunkowe: IM1_U08, IM1_U09
Powiązane charakterystyki obszarowe: I.P6S_UW, III.P6S_UW.1.o, III.P6S_UW.2.o, III.P6S_UW.4.o
Charakterystyka FIZ3_U4
Umie na podstawie zalecanej literatury lub innych fachowych źródeł rozszerzyć - poprzez pracę własną-posiadaną dotychczas wiedzę i umiejętności z zakresu fizyki
Weryfikacja: Kolokwium, obserwacja i ocena umiejętności studenta w trakcie zajęć.
Powiązane charakterystyki kierunkowe: IM1_U05
Powiązane charakterystyki obszarowe: I.P6S_UU
Charakterystyka FIZ3_U5
W trakcie wykonywania doświadczeń w laboratorium stosuje zasady bezpieczeństwa i higieny pracy.
Weryfikacja: Obserwacja i ocena umiejętności studenta w trakcie zajęć.
Powiązane charakterystyki kierunkowe: IM1_U11
Powiązane charakterystyki obszarowe: I.P6S_UW