- Nazwa przedmiotu:
- Projektowanie procesów podstawowych i aparatury 2
- Koordynator przedmiotu:
- dr inż. Rafał Przekop
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Inzynieria Chemiczna i Procesowa
- Grupa przedmiotów:
- Obowiązkowe
- Kod przedmiotu:
- IC.IK611
- Semestr nominalny:
- 6 / rok ak. 2018/2019
- Liczba punktów ECTS:
- 4
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- 1. Godziny kontaktowe z nauczycielem akademickim wynikające z planu studiów 60
2. Godziny kontaktowe z nauczycielem akademickim w ramach konsultacji 8
3. Godziny kontaktowe z nauczycielem akademickim w ramach zaliczeń i egzaminów 10
4. Przygotowanie do zajęć (studiowanie literatury, odrabianie prac domowych itp.) -
5. Zbieranie informacji, opracowanie wyników 10
6. Przygotowanie sprawozdania, prezentacji, raportu, dyskusji 20
7. Nauka samodzielna – przygotowanie do zaliczenia/kolokwium/egzaminu 10
Sumaryczne obciążenie studenta pracą 118 godz.
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- 2,6 ECTS
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- 1,4 ECTS
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład0h
- Ćwiczenia0h
- Laboratorium0h
- Projekt60h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Student powinien posiadać podstawową wiedzę z zakresu mechaniki płynów, termodynamiki, kinetyki procesowej, rysunku technicznego i materiałoznawstwa.
Wymagane jest wcześniejsze zaliczenie przedmiotów: Grafika inżynierska [IC.IK104], Podstawy nauki o materiałach [IC.IK106], Wymiana ciepła [IC.IK404].
- Limit liczby studentów:
- 100
- Cel przedmiotu:
- Nabycie praktycznych umiejętności projektowania procesów przemysłowych oraz projektowania i doboru aparatury.
- Treści kształcenia:
- 1. Zaprojektowanie kolumny rektyfikacyjnej działającej w sposób ciągły. Porównanie rozmiarów kolumny z półkami kołpakowymi z kolumną wypełnioną elementami o zadanych wymiarach geometrycznych.
2. Wykonanie projektu układu klimatyzacji powietrza w zadanym typie obiektu użytkowego, określenie parametrów pracy instalacji klimatyzacji, dobór mocy generatora, projekt instalacji rozprowadzającej z zapewnieniem zadanej krotności wymian, uwzględnienie strat ciepła i wykraplania pary wodnej.
3. Zaprojektowanie suszarni rozpyłowej. Dobór wymiarów geometrycznych oraz parametrów pracy urządzenia rozpylającego.
4.Obliczanie bioreaktorów idealnych oraz układów bioreaktorów. Dobór optymalnego układu do danego procesu. Zagadnienia powiększania skali, mieszania oraz napowietrzania bioreaktorów zbiornikowych dla procesów aerobowych.
5.Projekt stacji odwróconej osmozy: analiza filtrowanego medium, wykonanie bilansów masy ogólnej, masy składnika i energii, obliczenia liczby stopni filtracji, wyznaczenie powierzchni filtracyjnej membran, dobór elementów aparatury podstawowej i AKPiA, wykonanie schematu OO (P&ID).
- Metody oceny:
- Wykonanie zadań projektowych; zaliczenie każdego projektu odbywa się na podstawie oddanego projektu (zespołowo) i sprawdzenia wiedzy związanej z danym zadaniem w formie ustnej, z którego student uzyskuje ocenę indywidualną.
- Egzamin:
- nie
- Literatura:
- 1. A. Selecki, L. Gradoń, Podstawowe procesy przemysłu chemicznego, WNT, Warszawa, 1985.
2. J. Ciborowski, Podstawy inżynierii chemicznej, WNT, Warszawa, 1967.
3. J. Warych, Aparatura chemiczna i procesowa, OW PW, Warszawa, 2004.
4. J. R. Cooper, W. R. Penney, J. R. Fair, S. M. Walas, Chemical Process Equipment – Selection and Design, Butterworth-
Heinemann, 2010.
5. H. Błasiński, B. Młodziński, Aparatura przemysłu chemicznego, WNT, Warszawa, 1983.
6. T. Hobler, Ruch ciepła i wymienniki, WNT, Warszawa, 1986.
7. Z. Gnutek, W. Kordylewski, Maszynoznawstwo energetyczne. Wprowadzenie do energetyki cieplnej, Oficyna Wydawnicza
Politechniki Wrocławskiej, Wrocław, 2003.
8. A. Kubasiewicz, Wyparki. Konstrukcje i obliczanie, WNT, Warszawa, 1977.
9. R.G. Griskey, Transport phenomena and unit operations – a combined approach, Wiley-Interscience, NY, 2002.
10. P. P. Lewicki, A. Lenart, R. Kowalczyk, Inżynieria procesowa i aparatura przemysłu spożywczego, WNT, Warszawa, 2014.
- Witryna www przedmiotu:
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt W1
- Ma wiedzę niezbędną do zrozumienia podstaw fizycznych i chemicznych oraz obliczania podstawowych procesów inżynierii chemicznej.
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_W04
Powiązane efekty obszarowe:
T1A_W02, T1A_W03
- Efekt W2
- Ma elementarną wiedzę w zakresie spektrum dyscyplin inżynierskich powiązaną z inżynierią chemiczną i procesową oraz inżynierią materiałową.
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_W07
Powiązane efekty obszarowe:
T1A_W03, T1A_W04, T1A_W07
Profil ogólnoakademicki - umiejętności
- Efekt U1
- Potrafi projektować podstawowe aparaty stosowane w przemyśle chemicznym
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_U06
Powiązane efekty obszarowe:
T1A_U09
- Efekt U2
- PPotrafi pozyskiwać informacje z literatury, bazy danych oraz innych źródeł; potrafi je
interpretować a także wyciągać wnioski i formułować opinie.
Weryfikacja: egzamin pisemny
Powiązane efekty kierunkowe:
K_U01
Powiązane efekty obszarowe:
T1A_U01
- Efekt U3
- Potrafi projektować podstawowe procesy i operacje jednostkowe w inżynierii chemicznej i
procesowej.
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_U11
Powiązane efekty obszarowe:
T1A_U14
- Efekt U4
- Rozumie podstawy fizyczne i chemiczne podstawowych procesów i operacji jednostkowych.
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_U12
Powiązane efekty obszarowe:
T1A_U09
Profil ogólnoakademicki - kompetencje społeczne
- Efekt KS1
- Rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_K01
Powiązane efekty obszarowe:
T1A_K01
- Efekt KS2
- Ma doświadczenie związane z pracą zespołową
Weryfikacja: projekt, kolokwium
Powiązane efekty kierunkowe:
K_K02
Powiązane efekty obszarowe:
T1A_K03