- Nazwa przedmiotu:
- Mechanics of Structures I
- Koordynator przedmiotu:
- prof. dr hab. inż.Tomasz Lewiński, dr hab.inż. Grzegorz Dzierżanowski, prof. uczelni
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia I stopnia
- Program:
- Civil Engineering
- Grupa przedmiotów:
- Obligatory
- Kod przedmiotu:
- 1080-BU000-ISA-0404
- Semestr nominalny:
- 5 / rok ak. 2020/2021
- Liczba punktów ECTS:
- 4
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
-
por. opis po ang.
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- por. wersja ang.
- Język prowadzenia zajęć:
- angielski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- por. wersja po ang.
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład30h
- Ćwiczenia15h
- Laboratorium0h
- Projekt15h
- Lekcje komputerowe0h
- Wymagania wstępne:
- por. wersja po ang.
- Limit liczby studentów:
- according to the Dean's decision
- Cel przedmiotu:
- Skills in solving equilibrium problems of arbitrary statically determinate and statically indeterminate plane bar structures: computing stress resultants, displacements and angles of rotation of selected cross sections. Critical assessment of final results and model validation.
- Treści kształcenia:
- Repetition of the Euler theory of bars. Thermal loadings. Variational form of the equilibrium equations (or the virtual work equation), variational form of the compatibility equations (or the Maxwell-Mohr formula), theorem of Betti. Computing displacements of frames and plane arches. Statics of parabolic arches. Classification of trusses. The Force Method: trusses, frames, plane arches as well as pin-jointed grillages. Computing displacements in statically indeterminate bar structures. The Displacement Method for plane frames made from inextensional bars. The Direct Stiffness Methods for trusses and frames.
- Metody oceny:
- Test 1: checks the skills of solving equilibrium problems of plane frames and arch-frames, by the force method. Test 2: encompasses the displacement method in application to plane frames subject to flexural deformations.Projects : solving exemplary plane frames or arch-frames by the Force Method and the Displacement Method The projects are checked and defended. The written exam comprises two problems to be solved within 120 min. Both problems include computational and theoretical issues. All students are obliged to pass the written exam. The oral exam encompasses the whole material of the subject. The final exam grade encompasses both the written and oral exams. The joint grade is computed as the arithmetic mean from the grades for the tutorials and for the exam.
- Egzamin:
- tak
- Literatura:
- [1] G. Dzierżanowski, Lecture Notes. (Handouts)
[2] S. Krenk, J. Hogsberg, Statics and Mechanics of Structures, Springer Science+Business Media, Dordrecht, 2013. (Available as e-book from WUT Main Library)
- Witryna www przedmiotu:
- http://mk.il.pw.edu.pl/
- Uwagi:
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Efekt W1
- Students understand the theory of bars and bar structures, are able to apply the most important methods of solution of static problems of such structures-the force method and the displacement method. They know how to formulate problems of statics of trusses and frames made from inextensible bars under static loads, subject to settlements of supports or subject to thermal loads. Students know the methods based on the reciprocity theorems, including the kinematic constructions of influence lines of internal forces and reactions in the continuous beams and in statically indeterminate frames.
Weryfikacja: 2 tests, 2 homework problems along with their defences, the written and oral exams.
Powiązane efekty kierunkowe:
K1_W04, K1_W15
Powiązane efekty obszarowe:
T1A_W02, T1A_W03, T1A_W05, T1A_W06, T1A_W07, T1A_W01, T1A_W03, T1A_W07
Profil ogólnoakademicki - umiejętności
- Efekt U1
- Students are able to perform a complete static analysis of statically indeterminate bar systems made from straight or curved bars: know how to compute selected displacements or angles of rotation, how to construct the diagrams of stress resultants and reactions in continuous beams and plane frames.
Weryfikacja: 2 tests, 2 homework problems along with their defences, the written and oral exams.
Powiązane efekty kierunkowe:
K1_U05, K1_U28
Powiązane efekty obszarowe:
T1A_U03, T1A_U05, T1A_U07, T1A_U13, T1A_U01, T1A_U05, T1A_U08, T1A_U09
- Efekt U2
- Students are able to make use of the theory of bar systems; they understand the notions of: displacements, stresses, stress resultants; they know how to write down the equilibrium equations in problems with inextensibility constraints with using the virtual work equation, specified for the problems of trusses and frames. Students understand the Maxwell-Mohr formula which interrelates strain measures and displacements, thus making it possible to compute the latter at given nodes.
Weryfikacja: 2 tests, 2 homework problems along with their defences, the written and oral exams.
Powiązane efekty kierunkowe:
K1_U25
Powiązane efekty obszarowe:
T1A_U03, T1A_U09
Profil ogólnoakademicki - kompetencje społeczne
- Efekt K1
- Students cooperate with each other; they learn how to work together as a team. They understand the importance of the responsibility in the engineering activity and of the professionalism in presenting the results of their work. Student become aware of necessity of accurate and precise analyses of the engineering problems, being informed of consequences of misinterpretations of the structures response.
Weryfikacja: Assessment of students' activity during classes, especially during the work as a team.
Powiązane efekty kierunkowe:
K1_K01, K1_K02, K1_K03
Powiązane efekty obszarowe:
S2A_K03, T2A_K02, T2A_K05, T2A_K07, T1A_K01, T1A_K05, T1A_K06