Nazwa przedmiotu:
Przetwarzanie i analiza obrazów
Koordynator przedmiotu:
dr hab. inż. Jacek Dybała, prof. uczelni
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechatronika Pojazdów i Maszyn Roboczych
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
1150-MT000-ISP-0336
Semestr nominalny:
6 / rok ak. 2020/2021
Liczba punktów ECTS:
3
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Liczba godzin kontaktowych – 47 godz., w tym: a) wykład – 15 godz.; b) laboratorium – 30 godz.; c) konsultacje – 2 godz. 2) Praca własna studenta – 35 godz., w tym: a) studia literaturowe – 10 godz.; b) przygotowywanie się studenta do kolokwium – 5 godz.; c) przygotowywanie się studenta do ćwiczeń laboratoryjnych – 20 godz. 3) RAZEM – 82 godz.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
2 punkty ECTS – liczba godzin kontaktowych – 47 godz., w tym: a) wykład – 15 godz.; b) laboratorium – 30 godz.; c) konsultacje – 2 godz.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
2 punkty ECTS – 50 godz., w tym: a) laboratorium – 30 godz.; b) przygotowywanie się studenta do ćwiczeń laboratoryjnych – 20 godz.
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia0h
  • Laboratorium30h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Podstawowa wiedza z zakresu przetwarzania obrazów. Umiejętności obsługi komputera, podstawowa wiedza w zakresie programowania.
Limit liczby studentów:
zgodnie z zarządzeniem Rektora
Cel przedmiotu:
Zapoznanie studentów z zaawansowanymi metodami przetwarzania obrazów oraz podstawowymi metodami analizy obrazów. Nauczenie studentów budowy programów służących do przetwarzania i analizy obrazów.
Treści kształcenia:
Wykład: Transformacja Fouriera obrazów cyfrowych. Filtracja kontekstowa obrazów. Liniowe i nieliniowe filtry kontekstowe. Podstawowe i złożone przekształcenia morfologiczne obrazów. Przekształcenia morfologiczne obrazów binarnych. Detekcja linii konturowych za pomocą transformaty Hougha. Segmentacja obrazu. Etykietowanie obrazu. Wyznaczanie cech globalnych obrazu. Wyznaczanie cech obiektów widocznych na obrazach. Laboratorium: Akwizycja obrazów cyfrowych. Struktury danych stosowanych do reprezentacji obrazów cyfrowych i metody ich konwersji. Przekształcenia geometryczne, arytmetyczne i logiczne obrazów. Przekształcenia punktowe obrazu. Transformacja Fouriera obrazów cyfrowych. Filtracja kontekstowa obrazu. Przekształcenia morfologiczne obrazu. Detekcja linii konturowych za pomocą transformaty Hougha. Segmentacja obrazu. Analiza obrazu. Wyznaczanie cech obiektów widocznych na obrazach.
Metody oceny:
Wykład: Zaliczenie części wykładowej przedmiotu odbywa się na podstawie pisemnego kolokwium. Warunkiem koniecznym zaliczenia części wykładowej przedmiotu jest uzyskanie z kolokwium oceny co najmniej dostatecznej. Laboratorium: Warunkiem koniecznym zaliczenia części laboratoryjnej przedmiotu jest wykonanie w danym semestrze wszystkich ćwiczeń laboratoryjnych przewidzianych w programie i zaliczenie każdego ćwiczenia na ocenę co najmniej dostateczną. Każde ćwiczenie jest zaliczane przez prowadzącego dane ćwiczenie na podstawie sprawdzenia poprawności wykonania tego ćwiczenia laboratoryjnego. Warunkiem koniecznym zaliczenia przedmiotu jest zaliczenie części wykładowej i laboratoryjnej przedmiotu. Ocena łączna z przedmiotu jest średnią ważoną ocen z części wykładowej i laboratoryjnej przedmiotu.
Egzamin:
nie
Literatura:
[1] R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów. Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków, 1997. http://winntbg.bg.agh.edu.pl/skrypty2/0098/. [2] Z. Wróbel, R. Koprowski, Praktyka przetwarzania obrazów z zadaniami w programie Matlab. Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2008. [3] Z. Wróbel, R. Koprowski, Praktyka przetwarzania obrazów w programie Matlab. Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2004. [4] Z. Wróbel, R. Koprowski, Przetwarzanie obrazu w programie Matlab. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. [5] W. Kasprzak, Rozpoznawanie obrazów i sygnałów mowy. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2009.
Witryna www przedmiotu:
Uwagi:
-

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt 1150-MT000-ISP-0336_W1
Student, który zaliczył przedmiot posiada szczegółową wiedzę o metodach przetwarzania i analizy obrazów.
Weryfikacja: Kolokwium
Powiązane efekty kierunkowe: KMchtr_W07
Powiązane efekty obszarowe: T1A_W02, T1A_W04, InzA_W02

Profil ogólnoakademicki - umiejętności

Efekt 1150-MT000-ISP-0336_U1
Student, który zaliczył przedmiot potrafi pozyskiwać informacje z systemów pomocy kontekstowej środowisk programistycznych (w języku angielskim); potrafi integrować uzyskane informacje, dokonywać ich interpretacji i wykorzystywać w budowie oprogramowania.
Weryfikacja: Ocena jakości samodzielnie napisanego oprogramowania
Powiązane efekty kierunkowe: KMchtr_U01, KMchtr_U24
Powiązane efekty obszarowe: T1A_U01, T1A_U15, InzA_U05
Efekt 1150-MT000-ISP-0336_U2
Student, który zaliczył przedmiot potrafi budować programy służące do przetwarzania i analizy obrazów.
Weryfikacja: Ocena jakości wykonania ćwiczeń laboratoryjnych
Powiązane efekty kierunkowe: KMchtr_U08, KMchtr_U18
Powiązane efekty obszarowe: T1A_U08, T1A_U09, InzA_U01, T1A_U16

Profil ogólnoakademicki - kompetencje społeczne

Efekt 1150-MT000-ISP-0336_K1
Student, który zaliczył przedmiot potrafi odpowiednio ustalić priorytety służące realizacji określonego przez innych zadania.
Weryfikacja: Ocena jakości wykonania ćwiczeń laboratoryjnych
Powiązane efekty kierunkowe: KMchtr_K04
Powiązane efekty obszarowe: T1A_K03, T1A_K04