Nazwa przedmiotu:
Podstawy fotoniki
Koordynator przedmiotu:
dr inż. Maksymilan Chlipała, dr inż. Julianna Winnik
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Mechatronika
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
FOT
Semestr nominalny:
5 / rok ak. 2020/2021
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Liczba godzin bezpośrednich: 66, w tym: • Wykład: 45 godz. • Laboratorium: 15 godz. • Konsultacje: 3 godz. • Egzamin: 3 godz. 2) Praca własna studenta: 58, w tym: • przygotowanie do egzaminu, zapoznanie z literaturą : 40 godz. • Przygotowanie do zajęć laboratoryjnych: 12 godz. • Opracowanie sprawozdań: 6 godz. Razem: 124 godz. = 5 ECTS
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
2,5 punktu ECTS - Liczba godzin bezpośrednich: 66, w tym: • Wykład: 45 godz. • Laboratorium: 15 godz. • Konsultacje: 3 godz. • Egzamin: 3 godz.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
1,5 punktu ECTS - Liczba godzin: 33, w tym: • Laboratorium: 15 godz. • Przygotowanie do zajęć laboratoryjnych: 12 godz. • Opracowanie sprawozdań: 6 godz.
Formy zajęć i ich wymiar w semestrze:
  • Wykład45h
  • Ćwiczenia0h
  • Laboratorium15h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Podstawy optyki (kurs fizyki) i optomechatroniki
Limit liczby studentów:
30
Cel przedmiotu:
Zapoznanie się z podstawowymi zagadnieniami fotoniki - przybliżenie ich podstaw teoretycznych oraz poznanie podstawowych zastosowań w urządzeniach i systemach fotonicznych. Zapoznanie z praktyką numeryczną i laboratoryjną.
Treści kształcenia:
1. Wprowadzenie. Fotonika, optyka a elektronika. Związki między obszarami fotoniki. Postulaty optyki falowej. Fale monochromatyczne. Fale elementarne. Odbicie i załamanie w ujęciu falowym. 2. Interferencja. Interferencja dwuwiązkowa. Kodowanie i dekodowanie informacji. Interferencja heterodynowa. Interferencja w płytkach. Interferometry z podziałem czoła fali i amplitudy; wspólnej drogi; z rozdwojeniem czoła fali. Interferometry z zastosowaniem siatek dyfrakcyjnych. Interferencja wielo-promieniowa. 3. Optyka cienkich warstw. Opis działania pojedynczej warstwy przeciwodblaskowej (AR) i zwierciadlanej (R). Pokrycia wielowarstwowe. Polaryzacyjne elementy światło-dzielące. Filtry interferencyjne. 4. Dyfrakcja. Przybliżenie Fresnela i Fraunhofera. Wybrane zagadnienia dyfrakcji Fraunhofera. Dyfrakcja Fresnela na obiektach o symetrii kołowej. Płytka strefowa Fresnela. Zjawisko samoobrazowania. Interferometr Talbota. 5. Odwzorowanie w oświetleniu koherentnym. Optyka fourierowska. Optyczna realizacja przekształcenia Fouriera. Filtracja częstości w oświetleniu koherentnym. Odwzorowanie przedmiotu punktowego. Funkcje odpowiedzi impulsowej i przenoszenia. Kryteria zdolności rozdzielczej. Obraz punktu w apodyzowanym układzie optycznym. 6. Odwzorowanie holograficzne. 7. Optyka statystyczna i odwzorowanie w oświetleniu niekoherentnym. Koherencja czasowa i przestrzenna. Interferencja w świetle częściowo koherentnym. Obrazowanie w oświetleniu niekoherentnym. Propagacja koherencji przestrzennej w swobodnej przestrzeni. Twierdzenie Van Citterta-Zernike. Interferometry gwiezdne. 8. Polaryzacja światła. Opis geometryczny. Macierzowy opis Jonesa, Stokesa. Odbicie i załamanie na granicy dwóch ośrodków - wzory Fresnela. Macierze Jonesa dla podstawowych elementów polaryzacyjnych. Zastosowanie rachunku macierzowego do wyznaczania stanu polaryzacji. 9. Optyka ośrodków anizotropowych. Propagacja światła w ośrodku anizotropowym. Przejście wiązki niespolaryzowanej przez anizotropową płytkę płaskorównoległą. Aktywność optyczna. Polaryzatory wykorzystujące zjawisko dwójłomności. Transmisja światła spolaryzowanego przez płytkę dwójłomną. Płytki opóźniające. Kompensatory. 10. Wybrane zastosowania polaryzacji: interferometria polaryzacyjna, mikroskopia interferencyjno-polaryzacyjna, elastooptyka, elipsometria.
Metody oceny:
Wykład – egzamin. Ćwiczenia – ocena punktowa na podstawie (1) sprawdzianów weryfikujących przygotowanie się studenta do laboratorium, (2) realizacji ćwiczeń, (3) sprawozdań
Egzamin:
tak
Literatura:
1. R. Jóźwicki, Podstawy inżynierii fotonicznej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2006 2. K. Gniadek, Optyczne przetwarzanie informacji, PWN, Warszawa 1992 3. K. Patorski, M. Kujawińska, L. Sałbut, Interferometria laserowa z automatyczną analizą obrazu, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005 4. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, Wiley & Sons, Inc. New York 1991 5. D. Goldstein, Polarized Light, Marcel Dekker, New York 2003 6. J. W. Goodman, Introduction to Fourier Optics, Roberts and Company Publishers, 2005 7. M. Born, E. Wolf, Principles of Optics, Pergamon Press, Oxford 1970 (and later editions)
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka FOT_w01
Zna podstawowe prawa interferencji i potrafi dobrać układ interferometru do zadania pomiarowego.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_W02, K_W18
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o
Charakterystyka FOT_w02
Zna podstawowe zagadnienia dyfrakcji i potrafi je wykorzystać do celów pomiarowych i testowych.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_W02, K_W18
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o
Charakterystyka FOT_w03
Potrafi scharakteryzować odwzorowanie optyczne o oświetleniu koherentnym i niekoherentnym
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_W02, K_W18
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o
Charakterystyka FOT_w04
Zna podstawowe zjawiska w świetle spolaryzowanym i potrafi je wykorzystać w praktyce inżynierskiej.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_W18, K_W02
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o
Charakterystyka FOT_w05
Rozumie znaczenie koherencji fali i potrafi zastosować tą wiedzę do projektowania systemów optycznych.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_W02, K_W18
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o

Profil ogólnoakademicki - umiejętności

Charakterystyka FOT_u01
Zna podstawową literaturę naukową i inżynierską z zakresu optyki i fotoniki.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_U05, K_U07, K_U11, K_U12, K_U01
Powiązane charakterystyki obszarowe: P6U_U, I.P6S_UO, I.P6S_UU, I.P6S_UW.o, III.P6S_UW.o, I.P6S_UK
Charakterystyka FOT_u02
Potrafi wyjaśnić zasadę działania wybranych urządzeń optycznych i fotonicznych.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_U01, K_U05, K_U12
Powiązane charakterystyki obszarowe: P6U_U, I.P6S_UW.o, I.P6S_UK, I.P6S_UO, I.P6S_UU, III.P6S_UW.o

Profil ogólnoakademicki - kompetencje społeczne

Charakterystyka FOT_k01
Potrafi pracować w zespole podczas prowadzenia doświadczeń i wnioskowania.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_K01, K_K03
Powiązane charakterystyki obszarowe: P6U_K, I.P6S_KK, I.P6S_KO, I.P6S_KR
Charakterystyka FOT_k02
Potrafi integrować wiedzę mechatroniczną i optyczną.
Weryfikacja: Egzamin, kolokwia laboratoryjne, dyskusje podczas zajęć.
Powiązane charakterystyki kierunkowe: K_K03, K_K01
Powiązane charakterystyki obszarowe: P6U_K, I.P6S_KO, I.P6S_KR, I.P6S_KK