Nazwa przedmiotu:
Metody i Techniki Sztucznej Inteligencji II
Koordynator przedmiotu:
Prof. dr hab. inż. Krzysztof Lewenstein
Status przedmiotu:
Fakultatywny dowolnego wyboru
Poziom kształcenia:
Studia II stopnia
Program:
Mechatronika
Grupa przedmiotów:
Wariantowe
Kod przedmiotu:
MiTSI_II
Semestr nominalny:
4 / rok ak. 2020/2021
Liczba punktów ECTS:
2
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Liczba godzin bezpośrednich: 31h, w tym: a) wykład - 15h; b) ćwiczenia - 0h; c) laboratorium - 15h; d) projekt - 0h; e) konsultacje - 1h; 2) Praca własna studenta:25h , w tym: a) przygotowanie do kolokwium zaliczeniowego - 10h; b) przygotowanie do zajęć laboratoryjnych - 6h; c) opracowanie zadań domowych – 4h; d) studia literaturowe - 5h; Suma: 56 h (2 ECTS)
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
1 punkt ECTS - liczba godzin bezpośrednich: 31, w tym: a) wykład - .15.h; b) ćwiczenia - 0h; c) laboratorium - 15h; d) projekt - 0h; e) konsultacje - 1h;
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
1) Liczba godzin bezpośrednich: 31h, w tym: a) wykład - 15h; b) ćwiczenia - 0h; c) laboratorium - 15h; d) projekt - 0h; e) konsultacje - 1h; 2) Praca własna studenta:25h , w tym: a) przygotowanie do kolokwium zaliczeniowego - 10h; b) przygotowanie do zajęć laboratoryjnych - 6h; c) opracowanie zadań domowych – 4h; d) studia literaturowe - 5h; Suma: 56 h (2 ECTS)
Formy zajęć i ich wymiar w semestrze:
  • Wykład15h
  • Ćwiczenia0h
  • Laboratorium15h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Wymagana ogólna znajomość zagadnień wykładanych w przedmiotach: matematyka i informatyka. Podstawowa znajomość technik i metod sztucznej inteligencji, ich zastosowań.
Limit liczby studentów:
24
Cel przedmiotu:
Pogłębiona znajomość technik i metod sztucznej inteligencji, ich zastosowań i trendów rozwojowych, w szczególności systemów opartych o sieci neuronowe.
Treści kształcenia:
Definicje i klasyfikacje podstawowe. Rodzaje neuronów i metody ich uczenia. Podstawowe rodzaje sieci neuronowych i ich typowe aplikacje. Sieci jednokierunkowe; metody uczenia sieci wielowarstwowych; dobór architektury; zarys teorii generalizacji. Dedykowane sieci jednokierunkowe i ich zastosowania. Sieci rekurencyjne: metody treningu, zastosowania, pamięć asocjacyjna. Sieci komórkowe: metody treningu, zastosowania. Układowe realizacje sieci neuronowych. Uczenie głębokie. Tematyka ćwiczeń laboratoryjnych: Badania sieci jednokierunkowych BP. Rozpoznanie obrazów "bitmapowych". Kompresja zbiorów danych. Zastosowanie sieci do realizacji funkcji logicznych. Interpolacja przebiegu funkcji .Zagadnienia klasyfikacji – przykłady. Laboratorium prowadzone jest w oparciu o pakiet Stuttgart Neural Network Simulator - SNNS.
Metody oceny:
wykład – kolokwium zaliczające, laboratorium - zaliczenie na podstawie sprawozdania zawierającego opisy i wyniki z przeprowadzonych ćwiczeń oraz zadań polegających na optymalizacji sieci do wybranego zagadnienia. .
Egzamin:
nie
Literatura:
1.L. Rutkowski: Metody i techniki sztucznej inteligencji, PWN, 2012 2. S. Osowski: Sieci neuronowe w ujęciu algorytmicznym., WNT,1996 3. S. Osowski: Metody i narzędzia eksploracji danych, BTC 2014 4. P. Wawrzyński: Podstawy sztucznej inteligencji, OWPW, 2015 5. R. Kosiński: Sztuczne sieci neuronowe. Dynamika nieliniowa i chaos, PWN 2017
Witryna www przedmiotu:
http://zemip.mchtr.pw.edu.pl
Uwagi:
brak

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka MiTSI_II_2st_W01
Posiada pogłębioną wiedzę w zakresie komputerowych metod sztucznej inteligencji.
Weryfikacja: Zaliczenie wykładu
Powiązane charakterystyki kierunkowe: K_W09
Powiązane charakterystyki obszarowe: P7U_W, I.P7S_WG.o, III.P7S_WG
Charakterystyka MiTSI_II_2st_W02
Zan zasady optymalizacji i testowania systemów sztucznej inteligencji, a zwłaszcza sieci neuronowych.
Weryfikacja: Zaliczenie wykładu.
Powiązane charakterystyki kierunkowe: K_W09
Powiązane charakterystyki obszarowe: P7U_W, I.P7S_WG.o, III.P7S_WG
Charakterystyka MiTSI_II_2st_W03
Zna zasady budowy systemów sztucznej inteligencji, a zwłaszcza sieci neuronowych.
Weryfikacja: Zaliczenie wykładu, zaliczenie laboratorium
Powiązane charakterystyki kierunkowe: K_W09
Powiązane charakterystyki obszarowe: I.P7S_WG.o, III.P7S_WG, P7U_W

Profil ogólnoakademicki - umiejętności

Charakterystyka MiTSI_II _2st_U01
Umie zbudować i przetestować sieć jednokierunkową BP do prostego zagadnienia polegającego na rozpoznawaniu obrazów i klasyfikacji.
Weryfikacja: Pisemne sprawozdanie z przeprowadzonych testów.
Powiązane charakterystyki kierunkowe: K_U09, K_U10
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o, III.P7S_UW.o
Charakterystyka MiTSI_II _2st_U02
Umie wykorzystać narzędzia informatyczne typu SNNS do optymalizacji sieci neuronalnej.
Weryfikacja: Pisemne sprawozdanie z przeprowadzonych ćwiczeń.
Powiązane charakterystyki kierunkowe: K_U09, K_U10
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o, III.P7S_UW.o

Profil ogólnoakademicki - kompetencje społeczne

Charakterystyka MiTSI_II _2st_K01
Ma świadomość odpowiedzialności za pracę własną i zespołu, którego jest członkiem.
Weryfikacja: Wspólna ocena pracy zespołu. Sprawdzanie punktualności członków zespołu i terminowego wykonania zadań.
Powiązane charakterystyki kierunkowe: K_K04
Powiązane charakterystyki obszarowe: P7U_K, I.P7S_KO, I.P7S_KR