- Nazwa przedmiotu:
- Rachunek Prawdopodobieństwa 2/ Przedmiot obieralny 1
- Koordynator przedmiotu:
- prof. dr hab. Jacek Wesołowski/ Szczegóły w opisach oferowanych przedmiotów
- Status przedmiotu:
- Obowiązkowy
- Poziom kształcenia:
- Studia II stopnia
- Program:
- Matematyka
- Grupa przedmiotów:
- Wspólne
- Kod przedmiotu:
- 1120-MA000-LSP-0356/
- Semestr nominalny:
- 1 / rok ak. 2021/2022
- Liczba punktów ECTS:
- 5
- Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
- .
- Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
- .
- Język prowadzenia zajęć:
- polski
- Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
- .
- Formy zajęć i ich wymiar w semestrze:
-
- Wykład45h
- Ćwiczenia45h
- Laboratorium0h
- Projekt0h
- Lekcje komputerowe0h
- Wymagania wstępne:
- Rachunek Prawdopodobieństwa 2:
Analiza matematyczna, teoria miary, algebra liniowa, analiza zespolona, elementy analizy funkcjonalnej, rachunek prawdopodobieństwa 1
Przedmiot obieralny 1:
Szczegóły w opisach oferowanych przedmiotów.
- Limit liczby studentów:
- Bez limitu
- Cel przedmiotu:
- Rachunek Prawdopodobieństwa 2:
Zapoznanie studentów z drugą częścią zaawansowanego kursu rachunku prawdopodobieństwa
Przedmiot obieralny 1:
Przedmioty obieralne dotyczą zarówno teoretycznych, jak i praktycznych aspektów matematyki. Pozwalają na rozszerzenie i uszczegółowienie dotychczas zdobytej przez studentów wiedzy i umiejętności z wybranej tematyki. Student jest zobowiązany wybrać jeden przedmiot z listy przedmiotów obieralnych, zatwierdzony jako przedmiot kierunkowy dla danego etapu studiów na dany rok akademicki przez Komisję Programową kierunku Matematyka
- Treści kształcenia:
- Rachunek Prawdopodobieństwa 2:
1. Warunkowa wartość oczekiwana względem σ-ciała oraz względem zmiennej losowej.
2. Regularne rozkłady warunkowe, uogólniony wzór Bayesa.
3. Ciągi zmiennych losowych, miary probabilistyczne w przestrzeni ciągów, warunek zgodności Kołmogorowa.
4. Zbieżność według prawdopodobieństwa, zbieżność z prawdopodobieństwem jeden, warunki konieczne i dostateczne.
5. Zbieżność średniokwadratowa i według p-tego momentu, związki między różnymi typami zbieżności
6. Słabe prawa wielkich liczb, szeregi zmiennych losowych.
7. Nierówność Kołmogorowa, prawo zero-jedynkowe Kołmogorowa.
8. Mocne prawa wielkich liczb, twierdzenie Gliwienki-Cantelliego.
9. Słaba zbieżność miar probabilistycznych, jędrność, zbieżność według rozkładu.
10. Funkcje charakterystyczne, wzory na odwrócenie.
11. Twierdzenie o ciągłości, splot, kryteria dla funkcji charakterystycznych.
12. Centralne twierdzenia graniczne: dla tabilc trójkątnych, Moivre’a-Laplace’a, Lindeberga-Lévy’ego, Lapunowa, wielowymiarowa wersja ctg, metoda delta.
13. Momenty stopu, tożsamość Walda, martyngały.
14. Zagadnienia stopowania, zagadnienie ruiny gracza.
15. Jednostajna całkowalność, zbieżności martyngałów, nierówności martyngałowe.
Przedmiot obieralny 1:
Szczegóły w opisach oferowanych przedmiotów.
- Metody oceny:
- Rachunek Prawdopodobieństwa 2:
Zaliczenie ćwiczeń odbywa się na podstawie 10-13 kartkówek i 2 kolokwiów (w proporcji ok. 1:4). Do zaliczenia ćwiczeń niezbędne jest zdobycie co najmniej 50% punktów. Zaliczenie przedmiotu odbywa się na podstawie egzaminu pisemnego składającego się z dwóch części (zadaniowej i teoretycznej, w proporcjach 3:2). Do zaliczenia przedmiotu niezbędne jest zdobycie co najmniej 50% punktów z egzaminu bądź łącznie z egzaminu i ćwiczeń, przy czym stosunek punktów za egzamin i ćwiczenia to 3:2.
Przedmiot obieralny 1:
Szczegóły w opisach oferowanych przedmiotów.
- Egzamin:
- tak
- Literatura:
- Rachunek Prawdopodobieństwa 2:
1. J. Jakubowski, R. Sztencel Wstęp do teorii prawdopodobieństwa, SRIPT Warszawa, 2001
2. P. Billingsley Prawdopodobieństwo i miara, PWN Warszawa, 2009
3. W. Feller Wstęp do rachunku prawdopodobieństwa, t. I i II, PWN Warszawa, 2012.
Przedmiot obieralny 1:
Szczegóły w opisach oferowanych przedmiotów.
- Witryna www przedmiotu:
- brak
- Uwagi:
- Student, który na studiach pierwszego stopnia realizował przedmiot Rachunek Prawdopodobieństwa 2 jest zobowiązany do wybrania przedmiotu obieralnego za 5 punktów ECTS.
Egzamin dotyczy przedmiotu Rachunek Prawdopodobieństwa 2.
Efekty uczenia się
Profil ogólnoakademicki - wiedza
- Charakterystyka RP2_W01
- Zna abstrakcyjne pojęcie warunkowej wartości oczekiwanej i rozkładu warunkowego oraz ich własności
Weryfikacja: Egzamin – część teoretyczna, kartkówki na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_W02
- Zna pojęcie funkcji charakterystycznej, własności, twierdzenia o odwróceniu i twierdzenie o ciągłości
Weryfikacja: Egzamin – część teoretyczna, kartkówki na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_W03
- Zna pojęcie ciągu zmiennych losowych, różne pojęcia zbieżności: według prawdopodobieństw, według p-tego momentu, prawie na pewno, według rozkładu
Weryfikacja: Egzamin – część teoretyczna, kartkówki na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_W04
- Zna zagadnienia asymptotyczne probabilistyki: prawa wielkich liczb i centralne twierdzenia graniczne
Weryfikacja: Egzamin – część teoretyczna, kartkówki na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
Profil ogólnoakademicki - umiejętności
- Charakterystyka RP2_U01
- Potrafi znajdować rozkłady warunkowe i warunkowe wartości oczekiwane, w tym umie posługiwać się uogólnionym wzorem Bayesa
Weryfikacja: Egzamin – część zadaniowa, kolokwia na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_U02
- Potrafi znajdować funkcje charakterystyczne różnych rozkładów prawdopodobieństwa, a także posługiwać się wzorami na odwrócenie oraz twierdzeniem o ciągłości w badaniu zbieżności według rozkładu
Weryfikacja: Egzamin – część zadaniowa, kolokwia na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_U03
- Umie stosować słabe i mocne prawa wielkich liczb oraz interpretować otrzymywane wyniki. Umie stosować centrale twierdzenie graniczne do różnych zagadnień aplikacyjnych, w tym do metody Monte Carlo
Weryfikacja: Egzamin – część zadaniowa, kolokwia na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_U04
- Umie posługiwać się podstawowymi metodami martyngałowymi, w tym tożsamością Walda. Umie badać własności martyngałowe ciągów zmiennych losowych
Weryfikacja: Egzamin – część zadaniowa, kolokwia na ćwiczeniach
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
Profil ogólnoakademicki - kompetencje społeczne
- Charakterystyka RP2_K01
- Rozumie potrzebę stałego podnoszenia kwalifikacji
Weryfikacja: Kolokwia
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe:
- Charakterystyka RP2_K02
- Umie prawidłowo określić priorytety służące do realizacji określonego zadania
Weryfikacja: Kolokwia
Powiązane charakterystyki kierunkowe:
Powiązane charakterystyki obszarowe: