Nazwa przedmiotu:
Matematyka I
Koordynator przedmiotu:
dr inż. Małgorzata Buba-Brzozowa
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Inżynieria Środowiska
Grupa przedmiotów:
Podstawowe
Kod przedmiotu:
1110-IS000-ISP-1201
Semestr nominalny:
1 / rok ak. 2021/2022
Liczba punktów ECTS:
8
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Wykład - 30 godzin Ćwiczenia - 60 godzin Przygotowanie do ćwiczeń - 25 godzin Zapoznanie z literaturą - 15 godzin Przygotowanie do kolokwiów i sprawdzianów - 25 godzin Przygotowanie do zaliczenia egzaminu - 45 Razem - 200 godzin
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
5
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
nie dotyczy
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia60h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Znajomość materiału z matematyki ze szkoły średniej w zakresie podstawowym (liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, funkcje, ciągi, trygonometria, planimetria, geometria analityczna płaska)
Limit liczby studentów:
Cel przedmiotu:
Przedstawienie podstawowych wiadomości z algebry liniowej i geometrii analitycznej przestrzennej. Przedstawienie podstawowych wiadomości z rachunku różniczkowego funkcji rzeczywistej jednej i dwóch zmiennych rzeczywistych oraz rachunku całkowego funkcji rzeczywistej jednej zmiennej
Treści kształcenia:
Logika i rachunek zbiorów, twierdzenia i metody dowodu, teoria aksjomatyczna, iloczyn kartezjański i relacja, relacja równoważności i zasada abstrakcji, odwzorowania (funkcje) - rodzaje i własności, moc zbioru - zbiory przeliczalne i nieprzeliczalne. Działanie w zbiorze, grupa, pierścień, ciało. Przestrzeń n-wymiarowa rzeczywista, układy współrzędnych, wektory. Macierze, rodzaje, algebra macierzy. Wyznaczniki macierzy (definicja permutacyjna, rozwinięcia Laplace'a, rząd macierzy). Odwracanie macierzy, równania macierzowe. Układy równań liniowych, rozwiązywanie: twierdzenie Kroneckera-Capelliego, metoda eliminacji, przykłady. Rachunek wektorowy w przestrzeni: iloczyny (skalarny, wektorowy, mieszany), zastosowania. Płaszczyzna i prosta w przestrzeni (równania, wzajemne relacje, odległości punktu od płaszczyzny, prostej, odległość prostych skośnych). Przestrzeń wektorowa, liniowa zależność i niezależność wektorów, baza, wymiar; przykłady. Przekształcenie liniowe i reprezentacja macierzowa. Diagonalizacja macierzy (wartości i wektory własne). Formy kwadratowe i sprowadzanie ich do postaci kanonicznej. Ciągi liczbowe (monotoniczność, zbieżność), rachunek granic właściwych i niewłaściwych (symbole nieoznaczone), liczba e i granice z nią związane. Granice i ciągłość funkcji liczbowej, własności funkcji ciągłej. Pochodna funkcji (lokalna i jako funkcja), definicje, interpretacje, zastosowania. Pochodne wyższych rzędów. Obliczanie pochodnych (podstawowe twierdzenia). Podstawowe twierdzenia rachunku różniczkowego (Cauchy'ego, Taylora, Lagrange'a, Rolle'a, de l'Hospitala), interpretacje, zastosowania (wyznaczanie asymptot funkcji). Pierwsza (druga) pochodna funkcji a monotoniczność (wypukłość). Ekstrema (punkty przegięcia) - definicje, warunki konieczne i dostateczne istnienia, przykłady. Pełne badanie funkcji i zastosowania (zadania optymalizacyjne). Granice i ciągłość funkcji dwóch (trzech) zmiennych rzeczywistych. Pochodne cząstkowe funkcji dwóch zmiennych, twierdzenie Schwarza. Pojęcie różniczki funkcji dwóch zmiennych (zastosowania pierwszej różniczki do obliczeń przybliżonych), pierwsza i druga pochodna (hesjan), twierdzenie Taylora, ekstrema lokalne, globalne. Funkcja pierwotna i całka nieoznaczona, prawa całkowania, podstawowe metody całkowania (rekurencyjne, funkcji wymiernych, trygonometrycznych i pierwiastkowych. Całkowanie przez części i podstawienie. Całka oznaczona pojedyncza (definicja, interpretacja geometryczna). Podstawowe twierdzenia rachunku całkowego (Newtona-Leibniza, o postaci funkcji pierwotnej, o wartości średniej). Własności całki oznaczonej i jej obliczanie (całkowanie przez części i podstawienie), przykłady zastosowań
Metody oceny:
Zaliczenie ćwiczeń - co najmniej 13 pkt na 30 pkt. uzyskanych na podstawie: 3 kolokwia po 8 pkt. = 24 pkt. zadania z samouczka matematycznego = 6 pkt. Uzyskanie zaliczenia ćwiczeń dopuszcza do egzaminu pisemnego w formie 5 krótkich zadań przekrojowych z całego semestru. Z egzaminu można maksymalnie uzyskać 5 punktów. Liczba punktów do zaliczenia egzaminu to 2,3. Punktacja od 2,3 do 3,2 jest zaokraglana do oceny 3. Liczba punktów=ocena z egzaminu (z typowymi zaokrągleniami).Ocena zintegrowana: na podstawie wyniku z egzaminu i zaliczenia ćwiczeń oraz opinii prowadzącego ćwiczenia
Egzamin:
tak
Literatura:
A.M. Kaczyński: Ćwiczenia z podstaw matematyki wyższej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2013 A.M. Kaczyński: Podstawy analizy matematycznej. Rachunek różniczkowy, Tom 1, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2006 A.M. Kaczyński: Podstawy analizy matematycznej. Rachunek całkowy. Szeregi, Tom 2, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005 D.Witczyńska,K. Witczyński: Wybrane zagadnienia z algebry liniowej i geometrii,Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka W01
Posiada uporządkowaną wiedzę z podstaw logiki matematycznej, algebry liniowej i geometrii analitycznej w przestrzeni. Posiada elementarną wiedzę z podstaw rachunku różniczkowego i całkowego funkcji liczbowej. Zna podstawowe pojęcia rachunku różniczkowego funkcji 2 zmiennych
Weryfikacja: Wpisz opis
Powiązane charakterystyki kierunkowe: IS_W01
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o

Profil ogólnoakademicki - umiejętności

Charakterystyka U01
Potrafi formułować problemy w terminach macierzy wraz z wykonywaniem na nich operacji, w szczególności zna metody rozwiązywania układów równań liniowych. Widzi zastosowania teorii w badaniu podstawowych tworów geometrycznych oraz odwzorowaniach liniowych. Potrafi wykonywać działania na macierzach, rozwiązywać układy równań liniowych. Potrafi wyznaczać równania płaszczyzn i prostych w przestrzeni. Potrafi badać własności ciągów liczbowych i ich zbieżność, obliczać pochodne funkcji rzeczywistych, badać przebieg zmienności funkcji z zastosowaniem rachunku różniczkowego, stosować adekwatnie wybrane metody liczenia całek nieoznaczonych i oznaczonych. Umie wyznaczać ekstrema lokalne i globalne funkcji dwóch zmiennych
Weryfikacja: kolokwia, egzamin, aktywność na zajęciach, zadania domowe
Powiązane charakterystyki kierunkowe: IS_U01
Powiązane charakterystyki obszarowe: I.P6S_UW.o, III.P6S_UW.o, P6U_U

Profil ogólnoakademicki - kompetencje społeczne

Charakterystyka K01
Ma rozwinięte zdolności do abstrakcyjnego myślenia oraz systematycznego, konsekwentnego i rzetelnego podejścia do rozwiązywanych problemów. Potrafi pozyskiwać informacje z zalecanej literatury i innych źródeł; rozumie rolę jaką odgrywa matematyka przy rozwiązywaniu problemów technicznych
Weryfikacja: przygotowanie do zajęć, aktywność na zajęciach, udział w konsultacjach (także zdalnych), nauka samodzielna, wyniki Samouczka
Powiązane charakterystyki kierunkowe: IS_K01, IS_K03
Powiązane charakterystyki obszarowe: P6U_K, I.P6S_KK, I.P6S_KR