Nazwa przedmiotu:
Matematyka I - Analiza matematyczna I
Koordynator przedmiotu:
dr A. Leśniewski
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Budownictwo
Grupa przedmiotów:
Obowiązkowe
Kod przedmiotu:
1120-BU000-IZP-9001
Semestr nominalny:
1 / rok ak. 2021/2022
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Razem 125 godz. = 5 ECTS: wykład 20, ćwiczenia 20, przygotowanie do ćwiczeń (rozwiązywanie zadań) 50, konsultacje 7, przygotowanie do egzaminu i obecność na egzaminie 28.
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Razem 50 godz. = 2 ECTS: wykład 20, ćwiczenia 20, konsultacje 7, egzamin 3.
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Razem 77 godz. = 3 ECTS: obecność na ćwiczeniach 20, przygotowanie do ćwiczeń i sprawdzianów 50, konsultacje 7.
Formy zajęć i ich wymiar w semestrze:
  • Wykład20h
  • Ćwiczenia20h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Znajomość rozszerzonego programu matematyki ze szkoły średniej.
Limit liczby studentów:
bez limitu
Cel przedmiotu:
1. Zapoznanie studentów z pojęciami analizy matematycznej. 2. Nabycie umiejętności obliczania granicy funkcji jednej zmiennej, obliczania ekstremów funkcji jednej i wielu zmiennych, umiejętności rozwiązywania równań różniczkowych pierwszego i drugiego rzędu.
Treści kształcenia:
1. Liczby rzeczywiste. 2. Ciągi liczbowe i ich własności. Podstawowe twierdzenia o ciągach. 3. Granica ciągu monotonicznego i ograniczonego. Liczba e. 4. Funkcje rzeczywiste jednej zmiennej. Granice funkcji. Ciągłość funkcji. 5. Pochodne i różniczki funkcji jednej zmiennej. 6. Podstawowe twierdzenia rachunku różniczkowego: Fermata, Rolla, Lagrange’a, Taylora. 7. Reguły de l’Hospitala. 8. Extrema funkcji jednej zmiennej. 9. Funkcje wypukłe i wklęsłe. Punkty przegięcia wykresu funkcji. 10. Asymptoty wykresu funkcji. 11. Funkcja pierwotna i całka nieoznaczona. 12. Twierdzenia o całkowaniu przez części i podstawienie. 13. Całkowanie funkcji wymiernych i niewymiernych oraz trygonometrycznych. 14. Funkcje wielu zmiennych –granice, ciągłość i pochodne cząstkowe. 15. Extrema funkcji wielu zmiennych. 16. Równania różniczkowe pierwszego rzędu. Równania o zmiennych rozdzielonych. Równania liniowe jednorodne i niejednorodne. Równanie Bernoulliego. 17. Równania liniowe rzędu n o stałych współczynnikach.
Metody oceny:
Ocena oparta jest na aktywności studenta w czasie zajęć, wynikach sprawdzianów w trakcie semestru i egzaminu końcowego. Obliczana jest zgodnie z zasadami podawanymi w regulaminie przedmiotu.
Egzamin:
tak
Literatura:
[1] K. Litewska, J. Muszyński, Matematyka, t.1, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1997; [2] T. Kowalski, J. Muszyński, W. Sadkowski, Zbiór zadań z matematyki t.1, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998.
Witryna www przedmiotu:
https://pele.il.pw.edu.pl
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka K1_W01
Ma wiedzę z matematyki i fizyki, która umożliwia opis i rozumienie podstawowych zjawisk z obszaru budownictwa.
Weryfikacja: Egzamin pisemny.
Powiązane charakterystyki kierunkowe: K1_W01
Powiązane charakterystyki obszarowe: P6U_W, I.P6S_WG.o

Profil ogólnoakademicki - umiejętności

Charakterystyka K1_U01
Potrafi wykorzystywać poznane metody matematyczne (algebry i analizy matematycznej) do analizy podstawowych zagadnień fizycznych i technicznych, umie posługiwać sie regułami logiki matematycznej oraz stosować metody numeryczne w obliczeniach inżynierskich.
Weryfikacja: Kolokwia i egzamin pisemny.
Powiązane charakterystyki kierunkowe: K1_U01
Powiązane charakterystyki obszarowe: P6U_U, I.P6S_UW.o