Nazwa przedmiotu:
Sieci i sterowanie systemami
Koordynator przedmiotu:
Krzysztof Malinowski
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Automatyka i Robotyka
Grupa przedmiotów:
Przedmioty techniczne - zaawansowane
Kod przedmiotu:
SST
Semestr nominalny:
3 / rok ak. 2015/2016
Liczba punktów ECTS:
4
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Udział w wykładach: 15 x 2 godz. = 30 godz. Wykonywanie projektu: 15 x 1 godz. = 15 godz. Praca własna: 45 godz. Udział w konsultacjach: 5 godz. Łączny nakład pracy studenta: 95 godz., co odpowiada 4 ECTS
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
2
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
2
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia0h
  • Laboratorium0h
  • Projekt15h
  • Lekcje komputerowe0h
Wymagania wstępne:
konieczna znajomość podstaw optymalizacji zalecana znajomość podstaw automatyki i podstaw badań operacyjnych.
Limit liczby studentów:
30
Cel przedmiotu:
Przedmiot ma pokazać słuchaczom w jaki sposób, wobec potrzeby optymalizacji czy jedynie racjonalizacji, poprawy, działania, radzić sobie ze złożonością strukturalną i wymiarem w przypadku różnych systemów, w szczególności systemów sieciowych charakteryzujących się dużą liczbą powtarzalnych elementów i przepływów. Rozpatrywane są sieci przesyłu danych, sieci zaopatrzenia, a także inne systemy i zagadnienia optymalizacji o złożonym charakterze. Wykład dzieli się na trzy bloki tematyczne: A) systemy złożone, zagadnienie dekompozycji, koordynacja, dwupoziomowe metody optymalizacji: Metoda Bezpośrednia i Metoda Cen, hierarchiczne struktury sterowania, B) przykłady studialne pokazujące zastosowanie metod i struktur hierarchicznych, w tym struktur z koordynacją iteracyjną i koordynacją periodyczną, ukazujące także potrzebę stosowania innych podejść, takich jak agregacja w różnych ujęciach, uciąglanie zmiennych dyskretnych i inne; rozważane są zagadnienia sieciowe i złożone zadanie marketingu, C) zagadnienia teorii gier i projektowania mechanizmów decyzyjnych w sytuacji współistnienia podmiotów posiadających własne cele działania lecz korzystających z wspólnych zasobów.
Treści kształcenia:
Blok A: systemy złożone, zagadnienie dekompozycji, koordynacja, dwupoziomowe metody optymalizacji i hierarchiczne struktury sterowania (5 wykładów): 1. Wprowadzenie; zadania i systemy złożone, atrybuty złożoności: rozległość przestrzenna, wyodrębnione elementy wzajemnie na siebie oddziałujące, mniej lub bardziej autonomiczni decydenci lokalni, wiele zmiennych decyzyjnych/opisujących, lokalne i nadrzędne cele działania); koordynacja jako mechanizm zapewniania harmonii w systemie: koordynacja iteracyjna i periodyczna; agregacja jako mechanizm upraszczania złożonych zadań; rola przykładu – różnorodne sposoby radzenia sobie ze złożonością: systemy sieciowe (w tym Internet: zagadnienie sterowania intensywnością transmisji oraz routing), systemy wodne (sterowania fala powodziową, zaopatrzenie w wodę: optymalizacja pracy stacji uzdatniania wody i pomp). Systemy z wieloma niezależnymi decydentami świadomymi swego wpływu na zachowanie całości. 2. Zadanie optymalizacji złożonego systemu, wspólne ograniczenia zasobowe. Metody dwupoziomowe, koordynacja iteracyjna: dekompozycja zadania decyzyjnego, zadanie optymalizacji złożonego systemu, zmienne lokalne i oddziaływania interakcyjne, lokalne i globalne ograniczenia zasobów; bezpośrednie i pośrednie instrumenty koordynacji. Metoda Bezpośrednia, sformułowanie zadań lokalnych i zadania koordynatora, własności metody i warunki jej stosowalności, zalety i wady, w tym trudności z określanie zbioru dopuszczalnych decyzji (zbiór V0) na poziomie koordynatora. Metoda Cen, zadania lokalne i koordynatora, własności i warunki stosowalności: istnienie rozwiązań, funkcja dualna i luka dualności, algorytmy koordynacji, zalety i wady. 3. Przykład wykorzystania Metody Bezpośredniej i Metody Cen do rozwiązania zadania planowania budżetu kampanii reklamowej wielu produktów. Zadanie optymalizacji złożonego systemu z powiązaniami interakcyjnymi; sformułowanie, zastosowanie Metody Bezpośredniej i Metody Cen; wymagane własności systemu. Zadanie sterowania złożonym systemem w stanie ustalonym z wykorzystaniem modelu przybliżonego, Metoda Zrównoważenia Interakcji Systemowych; przykład wykorzystania: sterowanie poziomem (szybkością) transmisji źródeł w sieci danych. 4. Optymalizacja hierarchiczna metodą Bendersa oraz Bendersa-Kelleya. Rozwiązanie dużych zadań optymalizacji z dwoma grupami zmiennych, nawiązanie do Metody Bezpośredniej. Przykłady formułowania zadań, sposób rozwiązania trudności związanych ze zbiorem V0, zadanie Master i zadania Slave. 5. Algorytm rozwiązania: Metoda GBD – wersja I i wersja II. Materiał uzupełniający zawierający modyfikacje metody Kelleya oraz dekompozycja zadania optymalizacji w oparciu o metodę prymalno-dualną punktu wewnętrznego. Blok B: przykłady studialne pokazujące zastosowanie metod i struktur hierarchicznych, ukazujące także potrzebę stosowania innych podejść ( 4 wykłady, kolokwium): 6. Sterowanie ruchem w sieci Internet: protokół TCP, model matematyczny TCP Reno, uogólnienie modelu TCP: zadanie optymalizacji systemu a mechanizm okna. Protokół FAST TCP jako przykład mechanizmu związanego z Metodą Cen. Zadanie zarządzania siecią: zadanie łącznego doboru szybkości transmisji źródeł oraz doboru ścieżki (routing); wykorzystanie Metody Cen i heurystyczny algorytm routingu. 7. Agregacja i segmentacja danych w zastosowaniu do systemu wspomagającego wycenę usług telekomunikacyjnych. Modelowanie zachowań klientów i struktury ofert; typowe zachowania użytkowników sieci: modele matematyczne i ich Identyfikacja: iteracyjne dostrajanie, rozwiązanie problemu początkowego braku danych. Omówienie możliwych właściwości zadania optymalizacji taryf i sposoby doboru odpowiednich metod; rozwiązanie nawiązujące do metody stosowanej w planowaniu budżetu kampanii reklamowej. 8. Uzupełnienie treści wykładu nr 7 (w czasie do 30 min). Kolokwium sprawdzające znajomość materiału wyłożonego w bloku A (1 godz.). 9. Przykład sterowania siecią zaopatrzenia w wodę (1): periodyczna optymalizacja pracy pomp w dużym systemie wodociągowym; zadanie minimalizacji kosztów energii elektrycznej w przypadku złożonej taryfy: model hydrauliczny sieci, ograniczenia, duża liczba zmiennych decyzyjnych i wiele zmiennych opisujących, zadanie mieszane (zmienne o wartościach ciągłych i dyskretnych). Sposoby radzenia sobie ze złożonością tego zadania sterowania (optymalizacji): agregacja w różnych ujęciach (w tym agregacja urządzeń), uciąglanie zmiennych, dezagregacja. 10. Przykład sterowania siecią zaopatrzenia w wodę (2):sposób rozwiązania: sformułowanie zadania uproszczonego potrzebnego do wyznaczenia przybliżonych profili wypełnienia zbiorników w dłuższym okresie, zadanie z modelem hydraulicznym sieci z krótszym horyzontem i agregacją pomp, zadanie dezagregacji: harmonogramy pompowania; weryfikacja harmonogramów poprzez symulację pracy systemu. Blok C: zagadnienia teorii gier i projektowania mechanizmów decyzyjnych (5 wykładów) 11. System złożony z podsystemów autonomicznych mających własne cele działania i decydentów świadomych swojego wpływu na decyzje innych podmiotów. Wprowadzenie: sytuacja gry decyzyjnej, modele gry i punkty równowagi. Projektowanie instrumentów koordynacji. 12. Wstęp do teorii gier. Rozwiązania efektywne w sensie Pareto. Przykład optymalizacji parametrów ruchu w sieci przy współdziałaniu wielu podmiotów. 13. Gry decyzyjne, modele gry i punkty równowagi ; równowaga Nasha. Zagadnienie projektowania gry. Strategie dominujące. 14. Wstęp do projektowania mechanizmów decyzyjnych, koncepcja mechanizmu decyzyjnego; przykłady: ordynacje wyborcze Condorceta i Bordy’ego, ordynacje większościowe, określenia zasad finansowania projektu publicznego. Aukcje: pojedynczego obiektu i wielokrotne. Definicja mechanizmu decyzyjnego; wdrożenie w wersji strategii dominujących: mechanizm Vickreya-Clarka- Grovesa (VCG). 15. Projektowanie gry: implementacja mechanizmu w równowadze Nasha, projektowanie reguł mechanizmu. Wyznaczanie punktów równowagi Nasha, metoda cen uwikłanych.
Metody oceny:
Ocena wykonania zadań projektowych: do 40 punktów, ocena kolokwium (pisane podczas wykładu ósmego) – do 10 punktów, wynik egzaminu – do 50 punktów. Ocena końcowa pozytywna pod warunkiem: zaliczenia projektu (ocena niemniejsza niż 21 pkt.), uzyskania z egzaminu nie mniej niż 26 pkt., oraz uzyskania łącznie co najmniej 51 pkt.
Egzamin:
tak
Literatura:
Komplet przezroczy (slajdów) do wykładów, fragmenty książek z zakresu układów złożonych i teorii gier, materiały potrzebne do wykonania projektu.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt SST_W01
Wiedza z zakresu optymalizacji lub racjonalizacji działania złożonych struktur, w szczególności systemów sieciowych charakteryzujących się dużą liczbą powtarzalnych elementów i przepływów (np. sieci przesyłu danych, sieci zaopatrzenia). Wiedza z zakresu metod dekompozycji, koordynacja, dwupoziomowych metod optymalizacji, hierarchicznych struktur sterowania. Wiedza z zakresu teorii gier i projektowania mechanizmów decyzyjnych w sytuacji współistnienia podmiotów posiadających własne cele działania lecz korzystających z wspólnych zasobów.
Weryfikacja: Projekt, egzamin
Powiązane efekty kierunkowe: K_W04, K_W05, K_W06
Powiązane efekty obszarowe: T2A_W01, T2A_W03, T2A_W04, T2A_W05, T2A_W07

Profil ogólnoakademicki - umiejętności

Efekt SST_U01
Umiejętność opisania w odpowiedni sposób złożonych zagadnień decyzyjnych i rozwiązywania zadań optymalizacji dużej skali oraz projektowania mechanizmów decyzyjnych.
Weryfikacja: projekt
Powiązane efekty kierunkowe: K_U01, K_U07, K_U08, K_U09
Powiązane efekty obszarowe: T2A_U01, T2A_U07, T2A_U08, T2A_U09

Profil ogólnoakademicki - kompetencje społeczne

Efekt SST_K01
Potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
Weryfikacja: projekt
Powiązane efekty kierunkowe: K_K01
Powiązane efekty obszarowe: T2A_K06