Nazwa przedmiotu:
Analiza matematyczna 1
Koordynator przedmiotu:
Dr hab. Anna Dembińska, Dr Bogusława Karpińska
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia I stopnia
Program:
Informatyka
Grupa przedmiotów:
Wspólne
Kod przedmiotu:
1120-IN000-ISP-0001
Semestr nominalny:
1 / rok ak. 2017/2018
Liczba punktów ECTS:
6
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
Język prowadzenia zajęć:
polski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
Formy zajęć i ich wymiar w semestrze:
  • Wykład45h
  • Ćwiczenia45h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
Zakres wiedzy obowiązujący na maturze z matematyki w profilu rozszerzonym.
Limit liczby studentów:
Cel przedmiotu:
Celem przedmiotu jest zapoznanie studentów z badaniem zbieżności ciągów, liczeniem granic funkcji, badaniem ciągłości funkcji, liczeniem pochodnych i całkowaniem funkcji. Po ukończeniu kursu studenci powinni znać warunki konieczne i dostateczne zbieżności ciągów, reguły obliczania granic funkcji, własności funkcji ciągłych, zasady różniczkowania funkcji, własności funkcji różniczkowalnych oraz sposoby całkowania ważnych klas funkcji. Powinni także znać zastosowania praktycznie rachunku różniczkowego i całkowego oraz posiadać umiejętność: - definiowania funkcji i opisywania ich własności, - rozwijania funkcji we wzór Taylora, - badania przebiegu zmienności funkcji, - całkowania funkcji jednej zmiennej.
Treści kształcenia:
Zbiory ograniczone i ich kresy. Ciągi liczbowe o wyrazach rzeczywistych. Określenie granicy ciągu. Ciągi monotoniczne i twierdzenia o ich zbieżności. Ciąg ograniczony i twierdzenie Bolzano-Weierstrassa. Rachunek granic skończonych. Porównywanie ciągów. Symbole nieoznaczone. Ciągi rozbieżne do nieskończoności. Symbole ‘o’ małe i ‘O’ duże. Funkcja rzeczywista jednej zmiennej rzeczywistej. Ograniczoność, monotoniczność i bijektywność funkcji. Superpozycja funkcji i funkcja odwrotna, związek między wykresami tych funkcji. Definicja Heinego i definicja Cauchy’ego granicy funkcji. Granice niewłaściwe, twierdzenia o granicach, twierdzenie o zachowaniu nierówności w granicy, twierdzenie o trzech funkcjach. Funkcje ciągłe, twierdzenia o funkcjach ciągłych. Granice jednostronne i ciągłość jednostronna. Granice górna i dolna. Związki z granicą. Asymptota pionowa, pozioma i ukośna. Wielomiany i funkcje pierwiastkowe. Funkcje trygonometryczne i odwrotne do nich (funkcje cyklometryczne). Wzory redukcyjne i tożsamości trygonometryczne. Funkcje wykładnicze i logarytmiczne, funkcja ekponencjalna i odwrotna do niej funkcja - logarytm naturalny. Funkcje hiperboliczne i odwrotne do nich. Twierdzenie o zachowaniu znaku przez funkcję ciągłą. Własność Darboux. Twierdzenie Weierstrassa o osiąganiu kresów przez funkcję ciągłą. Jednostajna ciągłość. Twierdzenie Cantora. Definicja pochodnej funkcji i funkcji różniczkowalnej. Pochodne jednostronne. Interpretacja geometryczna pochodnej. Twierdzenia o pochodnej sumy, iloczynu i ilorazu dwóch funkcji. Twierdzenie o pochodnej funkcji złożonej. Twierdzenie o pochodnej funkcji odwrotnej. Wyprowadzenie wzorów na pochodne funkcji elementarnych i odwrotnych do nich. Pochodne i różniczki wyższych rzędów. Twierdzenie Rolle’a. Twierdzenie Cauchy’ego. Twierdzenie Lagrange’a i wnioski dotyczące monotoniczności funkcji. Twierdzenie Taylora (wzór Maclaurina). Przybliżanie funkcji wielomianem i błąd tego przybliżenia. Obliczanie granic za pomocą reguły de l’Hospitala. Ekstrema funkcji, warunek konieczny istnienia ekstremum. Dwa twierdzenia omawiające warunek wystarczający istnienia ekstremum. Określenie funkcji wypukłych i wklęsłych. Związek miedzy wypukłością funkcji a jej drugą pochodną. Punkty przegięcia, warunek konieczny istnienia punktu przegięcia. Badanie funkcji i jej wykres. Definicja funkcji pierwotnej całki nieoznaczonej. Twierdzenia o funkcjach całkowalnych. Twierdzenie o całkowaniu przez podstawienie. Twierdzenie o całkowaniu przez części. Całki rekurencyjne. Całkowanie funkcji wymiernych. Całkowanie funkcji trygonometrycznych, wykorzystywanie pewnych tożsamości trygonometrycznych, podstawienie uniwersalne. Całkowanie funkcji niewymiernych, podstawienie Eulera, metoda współczynników nieoznaczonych.
Metody oceny:
Zbiory ograniczone i ich kresy. Ciągi liczbowe o wyrazach rzeczywistych. Określenie granicy ciągu. Ciągi monotoniczne i twierdzenia o ich zbieżności. Ciąg ograniczony i twierdzenie Bolzano-Weierstrassa. Rachunek granic skończonych. Porównywanie ciągów. Symbole nieoznaczone. Ciągi rozbieżne do nieskończoności. Symbole ‘o’ małe i ‘O’ duże. Funkcja rzeczywista jednej zmiennej rzeczywistej. Ograniczoność, monotoniczność i bijektywność funkcji. Superpozycja funkcji i funkcja odwrotna, związek między wykresami tych funkcji. Definicja Heinego i definicja Cauchy’ego granicy funkcji. Granice niewłaściwe, twierdzenia o granicach, twierdzenie o zachowaniu nierówności w granicy, twierdzenie o trzech funkcjach. Funkcje ciągłe, twierdzenia o funkcjach ciągłych. Granice jednostronne i ciągłość jednostronna. Granice górna i dolna. Związki z granicą. Asymptota pionowa, pozioma i ukośna. Wielomiany i funkcje pierwiastkowe. Funkcje trygonometryczne i odwrotne do nich (funkcje cyklometryczne). Wzory redukcyjne i tożsamości trygonometryczne. Funkcje wykładnicze i logarytmiczne, funkcja ekponencjalna i odwrotna do niej funkcja - logarytm naturalny. Funkcje hiperboliczne i odwrotne do nich. Twierdzenie o zachowaniu znaku przez funkcję ciągłą. Własność Darboux. Twierdzenie Weierstrassa o osiąganiu kresów przez funkcję ciągłą. Jednostajna ciągłość. Twierdzenie Cantora. Definicja pochodnej funkcji i funkcji różniczkowalnej. Pochodne jednostronne. Interpretacja geometryczna pochodnej. Twierdzenia o pochodnej sumy, iloczynu i ilorazu dwóch funkcji. Twierdzenie o pochodnej funkcji złożonej. Twierdzenie o pochodnej funkcji odwrotnej. Wyprowadzenie wzorów na pochodne funkcji elementarnych i odwrotnych do nich. Pochodne i różniczki wyższych rzędów. Twierdzenie Rolle’a. Twierdzenie Cauchy’ego. Twierdzenie Lagrange’a i wnioski dotyczące monotoniczności funkcji. Twierdzenie Taylora (wzór Maclaurina). Przybliżanie funkcji wielomianem i błąd tego przybliżenia. Obliczanie granic za pomocą reguły de l’Hospitala. Ekstrema funkcji, warunek konieczny istnienia ekstremum. Dwa twierdzenia omawiające warunek wystarczający istnienia ekstremum. Określenie funkcji wypukłych i wklęsłych. Związek miedzy wypukłością funkcji a jej drugą pochodną. Punkty przegięcia, warunek konieczny istnienia punktu przegięcia. Badanie funkcji i jej wykres. Definicja funkcji pierwotnej całki nieoznaczonej. Twierdzenia o funkcjach całkowalnych. Twierdzenie o całkowaniu przez podstawienie. Twierdzenie o całkowaniu przez części. Całki rekurencyjne. Całkowanie funkcji wymiernych. Całkowanie funkcji trygonometrycznych, wykorzystywanie pewnych tożsamości trygonometrycznych, podstawienie uniwersalne. Całkowanie funkcji niewymiernych, podstawienie Eulera, metoda współczynników nieoznaczonych.
Egzamin:
Literatura:
1. F. Leja, Rachunek różniczkowy i całkowy, wyd. XVII, PWN, Warszawa, 2012. 2. A. Dembińska, B. Karpińska, J. Kotus, Analiza matematyczna I dla studentów informatyki, Oficyna Wydawnicza PW, Warszawa 2016. 3. K. Kuratowski, Rachunek różniczkowy i całkowy, PWN, 2007. 4. A. Birkholc, Analiza matematyczna dla nauczycieli, PWN, 1980.
Witryna www przedmiotu:
Uwagi:

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Efekt W01
Zna podstawy rachunku różniczkowego funkcji jednej zmiennej i jego zastosowania
Weryfikacja: Egzamin pisemny
Powiązane efekty kierunkowe: K_W01
Powiązane efekty obszarowe: T1A_W01
Efekt W02
Zna podstawy rachunku całkowego funkcji jednej zmiennej - funkcje pierwotne, całkę Riemanna, całki niewłaściwe - oraz ich zastosowania
Weryfikacja: Egzamin pisemny
Powiązane efekty kierunkowe: K_W01
Powiązane efekty obszarowe: T1A_W01

Profil ogólnoakademicki - umiejętności

Efekt U01
Potrafi definiować funkcje i opisywać ich własności. Posługuje się pojęciem granicy funkcji. Potrafi interpretować i wyjaśniać zależności funkcyjne, ujęte w postaci wzorów, tabel, wykresów, schematów i stosować je w zagadnieniach praktycznych
Weryfikacja: ocena punktowa kartkówek i kolokwiów oraz aktywności na zajęciach
Powiązane efekty kierunkowe: K_U01
Powiązane efekty obszarowe: T1A_U09
Efekt U02
Potrafi obliczać pochodne, zna rozwinięcia Taylora i umie je stosować. Umie wykorzystać metody rachunku różniczkowego funkcji jednej zmiennej w poszukiwaniu ekstremów lokalnych i globalnych oraz badaniu przebiegu funkcji
Weryfikacja: ocena punktowa kartkówek i kolokwiów oraz aktywności na zajęciach
Powiązane efekty kierunkowe: K_U01, K_U02, K_U09
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U09
Efekt U03
Umie całkować funkcje korzystając z podstawowych całek, ze wzoru na całkowanie przez części i podstawienie, zna sposoby całkowania ważnych klas funkcji. Potrafi wyjaśnić analityczny i geometryczny sens pojęcia całki oraz stosować je w zagadnieniach praktycznych
Weryfikacja: ocena punktowa kartkówek i kolokwiów oraz aktywności na zajęciach
Powiązane efekty kierunkowe: K_U01, K_U02, K_U09
Powiązane efekty obszarowe: T1A_U09, T1A_U09, T1A_U09