Nazwa przedmiotu:
Computer vision
Koordynator przedmiotu:
Włodzimierz Kasprzak, Ph.D., D.Sc. Professor
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Robotics
Grupa przedmiotów:
Przedmioty obowiązkowe
Kod przedmiotu:
EM04
Semestr nominalny:
1 / rok ak. 2020/2021
Liczba punktów ECTS:
5
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Number of hours that require the presence of a teacher – 50, including a) presence of the lectures - 30; b) presence in the exercises - 15 c) presence on consultation - 5 2) The number of hours of independent work of student - 85
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
3 ECTS credits – number of hours that require the presence of a teacher – 50, including a) presence of the lectures - 30; b) presence in the exercises - 15 c) presence on consultation - 5
Język prowadzenia zajęć:
angielski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
3 ECTS credits – which are obtained during classes of a practical nature; number of hours during classes of a practical nature - 80, including b) presence in the exercises - 15 c) presence on consultation – 5 d) independent work of student on solving practical exercise tasks and a homework task – 60
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
-
Limit liczby studentów:
100
Cel przedmiotu:
-
Treści kształcenia:
Contents: Image formation and auto-calibration. Low-level image processing: image normalization, colour spaces, image compression and image filtering. Image segmentation: edge detection, chain and line segment detection, Hough transforms, homogeneous region-, shape- and texture description. Object classification: the potential functions-, Bayes-, k-NN, SVM- and MLP- classifiers. Object recognition: dynamic programming, hypothesis generation-and-test, model-to-image matching and graph search. Image motion estimation: gradient- and block-based optical flow, discrete feature motion and active contour tracking. Two-view geometry - stereo-vision. Multi-view and motion-based 3-D object reconstruction. Dynamic vision: object tracking – recursive state estimation, autonomous navigation, discrete self-localization. Practical Work: Exercises on image processing for recognition purposes
Metody oceny:
Assessment will be marked out of a hundred points, where 70% comes from continuous assessment, and 30% comes from end-semester examination. In particular, points can be earned from: • tutorial, including a practical homework task, 0-40 pts.; • midterm test, 0-30 pts.; • final exam, 0-30 pts. The attendance requirements: an obligatory attendance of tutorial and an optional attendance of lecture.
Egzamin:
tak
Literatura:
Recommended texts: - W. Kasprzak, Computer Vision, lecture e-notes, WUT, 2008-2014. - Y. Ma, S. Soatto, J. Kosecka, S. Sastry, An Invitation to 3D Vision. From Images to Geometric Models, Springer-Verlag, New York 2004. on-line: vision.ucla.edu/MASKS/ - I. Pitas, Digital Image Processing Algorithms, Prentice Hall, New York, 1993. - O. Faugeras, Three-dimensional computer vision. A geometric viewpoint, The MIT Press. Cambridge, Mass. 1993, 2001 Further readings: • B. Siciliano, O. Khatib (eds.): Handbook of Robotics. Springer, Berlin Heidelberg, 2008 • OpenCV documentation: http://opencv.org/documentation.html • PCL (point clouds library) documentation: http://pointclouds.org/documentation/
Witryna www przedmiotu:
http://studia.elka.pw.edu.pl/pub/14Z/ECOVI.A/
Uwagi:
-

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka EM04_W1
Knowledge of different image processing methods
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam
Powiązane charakterystyki kierunkowe: AiR2_W01, AiR2_W04, AiR2_W11, AiR2_W12
Powiązane charakterystyki obszarowe: I.P7S_WG, P7U_W, III.P7S_WG.o, I.P7S_WK, III.P7S_WK.o, III.P7S_WG

Profil ogólnoakademicki - umiejętności

Charakterystyka EM04_U1
Ability to select proper image processing method for a specific purpose.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course.
Powiązane charakterystyki kierunkowe: AiR2_U01, AiR2_U06, AiR2_U16
Powiązane charakterystyki obszarowe: I.P7S_UW.o, III.P7S_UW.o, I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, III.P7S_UW.1.o, III.P7S_UW.3.o, P7U_U
Charakterystyka EM04_U2
Able to process the images for the purpose of getting the required information
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course.
Powiązane charakterystyki kierunkowe: AiR2_U06, AiR2_U12, AiR2_U16
Powiązane charakterystyki obszarowe: I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, III.P7S_UW.1.o, III.P7S_UW.3.o
Charakterystyka EM04_U3
Able to use the vision for objects recognition and robot motion guidance
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course.
Powiązane charakterystyki kierunkowe: AiR2_U14, AiR2_U17
Powiązane charakterystyki obszarowe: I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, III.P7S_UW.3.o