Nazwa przedmiotu:
Artificial intelligence
Koordynator przedmiotu:
Włodzimierz Kasprzak, Ph.D., D.Sc. Professor
Status przedmiotu:
Obowiązkowy
Poziom kształcenia:
Studia II stopnia
Program:
Robotics
Grupa przedmiotów:
Przedmioty obowiązkowe
Kod przedmiotu:
EM11
Semestr nominalny:
2 / rok ak. 2020/2021
Liczba punktów ECTS:
4
Liczba godzin pracy studenta związanych z osiągnięciem efektów uczenia się:
1) Number of hours that require the presence of a teacher - 50, including a) presence of the lectures- 30; b) presence in the exercises -15 c) presence on consultation - 5 2) The number of hours of independent work of student: 40
Liczba punktów ECTS na zajęciach wymagających bezpośredniego udziału nauczycieli akademickich:
3 ECTS credits – number of hours that require the presence of a teacher - 50, w including a) presence of the lectures - 30, b) presence in the exercises - 15, c) presence on consultation - 5.
Język prowadzenia zajęć:
angielski
Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym:
2 ECTS credits – which are obtained during classes of a practical nature; number of hours during classes of a practical nature - 50, including b) presence in the exercises - 15 c) presence on consultation – 5 d) independent work of student on solving practical exercise tasks – 30
Formy zajęć i ich wymiar w semestrze:
  • Wykład30h
  • Ćwiczenia15h
  • Laboratorium0h
  • Projekt0h
  • Lekcje komputerowe0h
Wymagania wstępne:
x
Limit liczby studentów:
100
Cel przedmiotu:
-
Treści kształcenia:
-
Metody oceny:
-
Egzamin:
tak
Literatura:
-
Witryna www przedmiotu:
http://studia.elka.pw.edu.pl/pub/14L/EAI.A/
Uwagi:
-

Efekty uczenia się

Profil ogólnoakademicki - wiedza

Charakterystyka EM11_W1
Students should be familiar with logical inference systems designed for perfect and imperfect knowledge representations.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_W04, AiR2_W07
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o, P7U_W
Charakterystyka EM11_W2
Students should know state space search and agent action planning algorithms used in artificial intelligence.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_W07, AiR2_W04
Powiązane charakterystyki obszarowe: P7U_W, I.P7S_WG, III.P7S_WG.o
Charakterystyka EM11_W3
Students should be familiar with knowledge representation systems and reasoning techniques.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_W04, AiR2_W07
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o, P7U_W
Charakterystyka EM11_W4
Students should know machine learning techniques.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_W04, AiR2_W07
Powiązane charakterystyki obszarowe: I.P7S_WG, III.P7S_WG.o, P7U_W

Profil ogólnoakademicki - umiejętności

Charakterystyka EM11_U1
Student should be able to design elements of autonomous agents.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_U01, AiR2_U06, AiR2_U16
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o, III.P7S_UW.o, I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, III.P7S_UW.1.o, III.P7S_UW.3.o
Charakterystyka EM11_U2
Student should be able to design knowledge-based systems, especially when implementing logical inference systems.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_U01, AiR2_U06
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o, III.P7S_UW.o, I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o
Charakterystyka EM11_U3
Student should be able to deal with imperfect information, especially by designing fuzzy reasoning and probabilistic reasoning systems.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_U01, AiR2_U06
Powiązane charakterystyki obszarowe: III.P7S_UW.o, I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, P7U_U, I.P7S_UW.o
Charakterystyka EM11_U4
Student should be able to solve agent’s activity control problems by advanced search and action planning algorithms.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_U01, AiR2_U06, AiR2_U16, AiR2_U17
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o, III.P7S_UW.o, I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, III.P7S_UW.1.o, III.P7S_UW.3.o
Charakterystyka EM11_U5
Student should be able to design machine learning algorithms (knowledge acquisition) by using: active observation, reinforcement learning and statistical learning.
Weryfikacja: Continuous assessment at tutorials regarding the acquired knowledge needed to solve computational and algorithmic exercise tasks, related to the content of this course. Written assessment of the course outcomes by a written mid-time test. Written assessment of the course outcomes by a final exam.
Powiązane charakterystyki kierunkowe: AiR2_U01, AiR2_U06, AiR2_U16, AiR2_U17
Powiązane charakterystyki obszarowe: P7U_U, I.P7S_UW.o, III.P7S_UW.o, I.P7S_UW, III.P7S_UW.2.o, III.P7S_UW.4.o, III.P7S_UW.1.o, III.P7S_UW.3.o